Feebly pT(i,k)-spaces in bitopological spaces
 Zahir Dobeas AL- Nafie
 Babylon University
 2006

Abstract

In this research we studied a PT(i,k)-spaces by using feebly sets which defined by maheshwari and we find a relation between these spaces and we called it a feebly $\mathrm{PT}(\mathrm{i}, \mathrm{k})$-spaces.

\section*{Introduction} S.N Maheshwari (1990) define a feebly open set in a topological space . A set A is said to be feebly open (Gyn and Lee, 1984) if there exist an open set O in X such that $\mathrm{O} \subset \mathrm{A} \subset \operatorname{scl}(\mathrm{O}) \quad$ where scl denotes the closure set in the topological space .

In bitopological space ($\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}$) M. Jelic (1994) give a new definition of pair wise $T(i, k)$)-spaces . A bitopological space X is said to be a pair wise $T(i, k)$-space if for every $\mathrm{x} \in \mathrm{X}$ and every p_{k}-open cover U of X there exist a pTi -open V of X and a $u \in U$ such that $s t(x, v) \subset U, i, k \in\{1,2,3\}$, and it is denoted by $p T(i, k)$-space .

In this paper we shall introduce a new definition of $\mathrm{pT}(\mathrm{i}, \mathrm{k})$-space by using feebly open set and we shall investigate the relation between these spaces .

2-preliminaries

In this section we shall investigate some properties of feebly open sets in bitopological spaces and give a new definition of pTi-cover by using a feebly open set and discuss a relation between them.

Remark(2-1) (Gyn and Lee ,1984)
Every open set is feebly -open set and the converse is not true.
Theorem (2-2) (Gyn and Lee, 1984)
Any union of feebly -open sets is feebly open.
Definition(2-3) (Gyn and Lee, 1984)
A point p in X is said to be feebly interior point of A if A is feebly neighborhood of p, and the set of all feebly interior points of A is denoted by $\operatorname{int}(\mathrm{A})$

Definition(2-4) (Gyn and Lee, 1984)
A set A in a topological space is said to be feebly-closed if it is complement is feebly open.

Remark(2-5) S.N Maheshwari (1990)
A set A in a topological space is feebly-open iff $\operatorname{fint}(\mathrm{A})=\mathrm{A}$
Remark(2-6) (Gyn and Lee, 1984)
The smallest feebly -closed set containing A is called feebly -closure of A and it is denoted by $\mathrm{fcl}(\mathrm{A})$ and $\mathrm{fcl}(\mathrm{A})=\mathrm{fcl}(\mathrm{fcl}(\mathrm{A})$.

Theorem(2-7) S.N Maheshwari (1990)
A subset A of a topological space X is called feebly closed iff $\mathrm{fcl}(\mathrm{A})=\mathrm{A}$

Remark(2-8)

A collection of all feebly open set is denoted by F.O(X) and we mean by F. $\mathrm{O}_{\mathrm{Ti}}(\mathrm{X})$ to be a set of all feebly open set with respect to T_{1} and T_{2} respectively .

Theorem(2-9) (Gyn and Lee, 1984)
If $\mathrm{B} \subset \mathrm{X}$ then $\operatorname{int}(\mathrm{B}) \subset f \operatorname{int}(\mathrm{~B}) \subset \operatorname{sint}(\mathrm{B}) \subset \mathrm{B} \subset \operatorname{scl}(\mathrm{B}) \subset \mathrm{cl}(\mathrm{B})$ where sint denotes semi-interior in X and fint denotes feebly interior inX.

Theorem(2-10) (Gyn and Lee, 1984)
If A is feebly -open in a space X and $A \subset B \subset \operatorname{scl}(A)$ then B is feebly open

Theorem(2-11)

If V and W are open in X and A is feebly - open and $\mathrm{W} \subset \mathrm{A} \subset \operatorname{scl}(\mathrm{A})$ then (V $\cap \mathrm{w}) \neq \varnothing$ and then $(\mathrm{V} \cap \mathrm{A}) \neq \varnothing$ is feebly -open
Proof: see (Gyn and Lee ,1984)

3- Feebly pT(I , k)-space.

In bitopological space $\left(X, T_{1}, T_{2}\right)$ a cover U of X is pair wise open if $U \subset T_{1} \subset T_{2}$ and if U contains anon -empty member of T_{1} and T_{2} (Flether, and et al., 1969) .

This pair wise open cover is called pT_{1}-open and is pT_{2}-open if for each $\mathrm{u} \in \mathrm{U}$. $\operatorname{int}_{T i}(X / u) \neq \varnothing$ for $\mathrm{i}=1$ or 2 where $\operatorname{int}_{T i}$ is the interior with respect to T_{i} and it is called p_{3}-open if for each $\mathrm{w} \in \mathrm{U}$ whenever $\mathrm{w} \in \mathrm{T}_{\mathrm{i}}$, there exist anon -empty T_{i}-open sets $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that $\mathrm{V}_{1} \subset \mathrm{cl}_{\mathrm{Ti}}\left(\mathrm{V}_{1}\right) \subset \mathrm{V}_{2} \subset(\mathrm{X} / \mathrm{w})$ for $\mathrm{i} \neq \mathrm{j}$ and $\mathrm{i}=1,2$ and $\mathrm{cl}_{\mathrm{Ti}}$ is the closure with respect to $T_{i}[3]$ in this section we shall define these covers by using feebly -open set and define $\mathrm{pT}(\mathrm{i}, \mathrm{k})$-spaces also by feebly-open and investigate areolation between these spaces.

Definition(3-1)

A cover U of a bitopological space ($\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}$) is called feebly pair wise open if $\mathrm{U} \subset \mathrm{F} . \mathrm{O}_{\mathrm{T} 1}(\mathrm{X}) \subset \mathrm{F} . \mathrm{O}_{\mathrm{T} 2}(\mathrm{X})$ and U contains anon -empty member of $\mathrm{F} . \mathrm{O}_{\mathrm{T} 1}(\mathrm{X})$ and a non empty member of
F. $\mathrm{O}_{\mathrm{T} 2}(\mathrm{X})$ then a feebly pair wise open cover is called feebly pair wise T_{1}-open and it is dented by FpT_{1}-open.

Definition (3-2)

A feebly pair wise open cover U of abitopological space (X, T_{1}, T_{2}) is said to be feebly pT_{2}-open if for each $\mathrm{u} \in \mathrm{U}$, fint $\mathrm{T}_{\mathrm{i}}(\mathrm{X} / \mathrm{u}) \neq \varnothing$, for $\mathrm{i}=1,2$ and it is denoted by Fp_{2}-open, where fint ${ }_{\mathrm{T} 2}$ denotes a feebly interior with respect to $\mathrm{Ti}, \mathrm{i}=1,2$.

Definition(3-3)

A feebly pair wise open cover W of a bitopological space ($\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}$) is said to be feebly pT_{3}-open if for each $\mathrm{w} \in \mathrm{W}$ whenever $\mathrm{w} \in \mathrm{T}_{\mathrm{I}}$, there exist T_{I}-feebly open sets $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that $\mathrm{V}_{1}, \mathrm{~V}_{2} \neq \varnothing, \mathrm{V}_{1} \subset \mathrm{fc}_{\mathrm{T}}\left(\mathrm{V}_{1}\right) \subset \mathrm{V}_{2} \subset(\mathrm{X} / \mathrm{w})$ and $\mathrm{i}=1,2$ and it is denoted by Fp_{3}-open, where $\mathrm{fcl}_{\mathrm{Ti}}$ is a feebly closure with respect to $\mathrm{T}_{\mathrm{i}}, \mathrm{i}=1,2$.

Definition(3-4)

A bitopological ($\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}$) is said to be feebly pair wise $\mathrm{T}(\mathrm{i}, \mathrm{k})$-space $, \mathrm{i}, \mathrm{k} \in\{1,2,3\}$ if for every $\mathrm{x} \in \mathrm{X}$ and every Fp_{k}-open cover U of X there exist a $\mathrm{Fp}_{\mathrm{i}}(\mathrm{i}, \mathrm{k})$-open cover V of X and U such that $\mathrm{F} . \operatorname{st}(\mathrm{X}, \mathrm{V}) \subset \mathrm{U}$ and it is denoted by FPT(i,k)-space, where F.st is a feebly Neighborhood system.

Lemma(3-5)

Let $\left(\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ be a bitopological space then
1 -every Fp_{3}-open cover is FpT_{2}-open cover
2- every Fp_{2}-open cover is FpT_{1}-open cover.

Proof(1):-

Let U be a Fp_{3}-open cover, then for each $\mathrm{u} \in \mathrm{U}$ whenever u is feebly open with respect to T_{i}, there exist two non empty T_{i}-feebly open sets V_{1}, V_{2} such that $\mathrm{V}_{1} \subset \mathrm{Fcl}_{\mathrm{Ti}} \subset \mathrm{V}_{2} \subset \mathrm{X} / \mathrm{U}$
$\operatorname{Fint}_{\mathrm{T}_{\mathrm{i}}}\left(\mathrm{V}_{1}\right) \subset(\text { fint }(\mathrm{fcl}))_{\mathrm{Ti}}\left(\mathrm{V}_{1}\right) \subset \operatorname{fint}_{\mathrm{T}_{\mathrm{i}}}\left(\mathrm{V}_{2}\right) \subset$ fint $_{\mathrm{Ti}}(\mathrm{X} / \mathrm{U})$ which is mean $\operatorname{fint}_{\mathrm{T}_{\mathrm{T}}}(\mathrm{X} / \mathrm{U})$ $\neq \varnothing$ then U is $F_{p} T_{2}$-open cover

Proof(2):-

Let U be a Fp_{2}-open cover then for each $\mathrm{u} \in \mathrm{U}$ fint $\mathrm{T}_{\mathrm{i}}(\mathrm{X} / \mathrm{u}) \neq \varnothing$, for $\mathrm{i}=1$ or2 Let $w \in T_{i} / \inf _{T_{i}}(X / u)$ for $i=1$ or 2 then $w \in T_{I}$ and $w \notin \operatorname{fint}(X / u) w \in T_{i}$ and then $w \in$ fint $T_{T i}(u)$ from that we get u is feebly -open and then fint $T_{i}(u)=u$ then $w \in T_{i}$ and $w \in u$ then U contains anon empty member T_{i} and $\mathrm{i}=1$ or 2 there for U is Fp_{1}-open cover .

The following examples show that the converse of the above lemma is not true for (1)and (2) respectively.

Example(3-6):- let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{T}_{1}=\{\mathrm{X}, \varnothing,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$,
$\mathrm{T}_{2}=\{\mathrm{X}, \varnothing,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\{\mathrm{a}, \mathrm{c}\}\}$
F.OT $_{1}(\mathrm{X})=\{\mathrm{X},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$
F.OT $_{2}(\mathrm{X})=\{\mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$

Let $\mathrm{U}=\{\mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{c}\}\}$
Then U is feebly open cover since $\mathrm{U} \subset \mathrm{F}^{2} \mathrm{OT}_{1} \cup \mathrm{~F} . \mathrm{OT}_{2}$
Now $\{a\} \in U, X /\{a\}=\{b, c\}, \operatorname{fint}_{1}\{b, c\}=\{b, c\} \neq \varnothing$
fint $T_{2}\{b, c\}=\{b\} \neq \varnothing, \mathrm{Fp}_{2}$-open but not FpT_{3}-open.

Example(3-7):- let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \backslash$
$\mathrm{T}_{1}=\{\mathrm{X}, \varnothing,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$
$\mathrm{T}_{2}=\{\mathrm{X}, \varnothing,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$
F.OT $_{1}(X)=\{X,\{a\},\{b\},\{c\},\{b, c\}\{a, c\}\}$
$\mathrm{F}_{\mathrm{OT}}^{2}(\mathrm{X})=\{\mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}\}$
Let $\mathrm{U}=\{\mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
Then U is FpT-open cover since U contains anonempty member of $\mathrm{F}_{\mathrm{C}} \mathrm{OT}_{1}(\mathrm{X})$ and anon empty member of ${\mathrm{F} . \mathrm{OT}_{2}(\mathrm{X})}^{\text {(}}$
But U is not FpT_{2}-open cover

Theorem(3-8)

let $\left(\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ be a bitopological space then $\mathrm{FpT}(3,3)$-space is $\mathrm{FpT}(2,3)$-space.
then for every x in X and FpT_{3}-open cover U of X , there exist FpT_{3}-open cover of X and $u \in U$ such that F.st $(X, V) \subset U$ now since V is $F p T_{3}$-open cover then V is FpT_{2}-open cover by
lemma(3-5)part (10).Then for every FpT_{3}-open cover ,there exist FpT_{2}-open cover satisfying the condition then X is $\mathrm{FpT}(2,3)$.

Corollary (3-9)

1- every $\mathrm{FpT}(2, \mathrm{k})$-space is $\mathrm{FpT}(\mathrm{j}, \mathrm{k})$-space provided $\mathrm{i}>\mathrm{j}$ and k constant $\mathrm{i}, \mathrm{j}, \mathrm{k}$, $\in\{1,2,3\}$
Proof: the proof exist by using lemma (3-6) part (1)and (2).
2- every $\mathrm{FpT}(\mathrm{i}, \mathrm{k})$-space provided $\mathrm{k}<\mathrm{j}$ and i constant $\mathrm{i}, \mathrm{j}, \mathrm{k} \in\{1,2,3\}$.and the follow diagram is easy to prove

Remark(3-10):-

the convers of (1) and (2) of aremark above need not to be true, since from remark(3-6) and it is example we can make sure an example of each one of $\mathrm{FpT}(\mathrm{i}, \mathrm{k})$ and $\operatorname{FpT}(\mathrm{i}, \mathrm{k})$-spaces by change of the value of $\mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3$ and using the same covers of an examples remark(3-6).
$\mathrm{FpT}(3,3)$-space $\Rightarrow \mathrm{FpT}(2,3)$-space $\Rightarrow \mathrm{FpT}(1,3)$-space

\Uparrow
$\operatorname{FpT}(3,1)$-space $\Rightarrow \operatorname{FpT}(2,1)$-space $\Rightarrow \operatorname{FpT}(1,1)$-space ${ }^{\Uparrow}$

References

S.N. Maheshwari and U. Tapi (1990) "note oon some application feebly open sets" M.B.,J. University of Sauger (to appear).

Gyn Inn Chae and D.W. Lee (1984) "feebly -pen sets and feebly-continues in topological spaces" dep. F mathematics ,UIT reprt , 15, No.2, 367-371.
M. Jelic (1989) " T_{I}-pairwise continues function and bitopological separation axioms mat". Vesuik 41,3,155-159.
M. Jelic (1994) "nearly $\mathrm{pT}_{\mathrm{I}^{-}}$continues mapping" MATEM,46,25-28.
P. Flether, H.B. Hoyle and C.W. Puth (1969) "the comparison of topologies" pure math. J.36,2,325-331.

الخلاصة

ان هذا البحث تناول فضاءات PT(I,k) الثثائية التبولوجي وذللك باستخدام المجموعة الواهنة
حيث قمنا بايجاد العلاقة بين هذه الفضاءات \quad Maheshwari ولتي قام بتعريفها العالم (feebly set)
واطلقنا عليها تسمية فضاءات PT(I,k) الو اهنة .

