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Abstract 
In this research we studied a PT(i,k)-spaces by using feebly sets which defined 

by maheshwari and we find a relation between these spaces and we called it a feebly 
PT(i,k)-spaces. 

 

Introduction 
S.N Maheshwari (1990) define a feebly  open set in a topological space . A set 

A is said to be feebly open  (Gyn   and  Lee ,1984)  if there exist an open set  O  in X 
such that  OAscl(O)    where scl denotes the closure set in the topological space . 

In bitopological space (X,T1,T2)  M. Jelic (1994) give a new definition of pair 
wise T(i,k))-spaces . A bitopological space X is said to be a pair wise T(i,k) –space if 
for every xX and every pTk-open  cover U of X there exist a pTi –open  V  of X and 
a uU  such that st(x,v)U , i,k{1,2,3} ,and it is  denoted by pT(i, k)-space . 

In this paper we shall introduce a new definition of pT(i, k)-space by using 
feebly open set and we shall investigate the relation between these spaces . 

 

2-preliminaries 
In this section we shall investigate some properties of feebly open sets in 

bitopological spaces and give a new definition of pTi-cover by using a feebly open set 
and discuss a relation between  them. 

 
Remark(2-1) (Gyn   and  Lee ,1984)    

Every open set is feebly –open set and the converse is not true. 
 

Theorem (2-2) (Gyn   and  Lee ,1984)   
Any union of feebly –open sets is feebly open. 

 
Definition(2-3) (Gyn   and  Lee ,1984)   

A point p in X is said to be feebly interior point of A if A is feebly 
neighborhood of p , and the set of all feebly interior points  of A is denoted by  int(A) 

 
Definition(2-4) (Gyn   and  Lee ,1984)   

A set A in a topological space is said to be feebly–closed if it is complement is 
feebly open. 

 
Remark(2-5) S.N Maheshwari (1990)  

A set A in a topological space is  feebly–open iff  fint(A)= A 
 
Remark(2-6) (Gyn   and  Lee ,1984)  

The smallest feebly –closed set containing A is called feebly –closure  of A and 
it is denoted by fcl(A) and fcl(A)=fcl(fcl(A). 
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Theorem(2-7) S.N Maheshwari (1990)  
A subset A of a topological space X is called feebly closed iff fcl(A)=A 

 
Remark(2-8) 

A collection  of all feebly open set is denoted by  F.O(X) and we mean by 
F.OTi(X) to be a set of all feebly open set with respect to T1 and T2 respectively . 

 
Theorem(2-9) (Gyn   and  Lee ,1984)   

If BX then int(B)fint(B)sint(B)Bscl(B)cl(B) where sint denotes  
semi–interior  in X and fint denotes feebly interior inX. 

 
Theorem(2-10) (Gyn   and  Lee ,1984)   

If A is feebly –open in a space X and ABscl(A) then B is feebly open 
 
Theorem(2-11) 

If V and W are open in X and A is feebly –open and WAscl(A) then (V 
∩w)and then (V∩A) is feebly –open 
Proof: see (Gyn   and  Lee ,1984)    

 

3- Feebly pT( I , k)-space. 
In bitopological space  (X,T1,T2) a cover U of X is pair wise open if UT1T2 

and if U contains anon –empty member of T1 and T2 (Flether, and et al., 1969) . 
This pair wise open cover is called  pT1-open and is pT2-open if for each uU . 

intTi(X/u)   for i=1 or 2 where intTi  is the interior with respect to  Ti and it is called  
pT3-open if for each wU whenever wTi , there exist anon –empty Ti-open sets 
V1,V2 such that V1clTi(V1) V2(X/w) for ij  and i=1,2 and clTi is the closure with 
respect to  Ti [3]in this section we shall define these covers by using feebly –open set 
and define pT(i,k)-spaces also by feebly–open and investigate areolation between 
these spaces. 

 
Definition(3-1) 

A cover U of a bitopological space (X, T1,T2) is called feebly pair wise open if 
UF.OT1(X) F.OT2(X)   and U contains anon –empty member of F.OT1(X) and a non 
empty member of  

F.OT2(X)  then a feebly pair wise open cover is called feebly pair wise T1-open 
and it is dented by  FpT1-open. 

 
Definition (3-2) 

A feebly pair wise open cover U of abitopological space (X,T1,T2) is said to be 
feebly pT2-open if for each  uU, fintTi(X/u) ,  for i=1,2   and it is denoted by 
FpT2-open , where fintT2 denotes a feebly interior with respect to Ti, i=1,2 . 

 
Definition(3-3) 

A feebly pair wise open cover  W of a bitopological space (X,T1,T2) is said to 
be feebly pT3-open if for each wW whenever  wTI , there exist  TI –feebly open 
sets V1,V2 such that  V1,V2 ,  V1fclTi(V1) V2(X/w) and i=1,2 and it is denoted 
by FpT3-open, where fclTi    is a feebly closure with respect to  Ti , i=1,2. 
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Definition(3-4) 
A bitopological (X,T1,T) is said to be feebly pair wise T(i,k) –space 

,i,k{1,2,3} if for every xX and every  FpTk-open cover U of X there exist a 
FpTi(i,k) –open cover V of X and U  such that  F.st(X,V) U  and it is denoted by 
FPT(i,k)-space ,where F.st is a feebly Neighborhood system. 

 
Lemma(3-5) 
Let (X,T1,T2) be a bitopological space then  
1-every FpT3-open cover is FpT2-open cover 
2- every FpT2-open cover is FpT1-open cover.       
Proof(1):-  

Let U be a FpT3-open cover , then for each  uU whenever u is feebly open 
with respect to  Ti, there exist two non empty  Ti-feebly open  sets  V1,V2   such that 
V1FclTiV2X/U 

FintTi(V1) (fint(fcl))Ti(V1) fintTi(V2) fintTi(X/U)  which is mean  fintTi(X/U) 
 then  U is FpT2-open cover 

 
Proof(2):- 

Let U be a FpT2-open cover  then for each uU  fintTi(X/u) , for i=1or2 Let 
wTi/intTi(X/u)   for i=1 or 2  then wTI and wfint(X/u) wTi and then wfintTi(u)   
from that we get  u is feebly –open and then fintTi(u)=u then wTi and wu then U 
contains anon empty member  Ti and i=1 or 2  there for U is FpT1-open cover . 

The following examples show that the converse of the above lemma is not true 
for (1)and (2) respectively.  

 
{a},{b,c}},, ,={X1let X={a,b,c} , T -:6)-(3xampleE 

 T2={X,, {a},{b},{c},{a,b},{b,c}{a,c}} 
F.OT1(X)={X, {a},{b,c},{a,b},{a,c}} 
F.OT2(X)={X, {a},{b},{c},{a,b},{a,c},{b,c}} 
Let U={X,{a},{b},{b,c},{c}} 

 
Then  U is feebly open cover since UF.OT1F.OT2 
Now {a} U , X/{a}={b,c} , fintT1{b,c}={b,c}≠ 

   
fintT2{b,c}={b}, FpT2-open but not FpT3-open. 

Example(3-7):- let X={a,b,c} 

T1={X, , {a} ,{b},{c}, {a,b},{b,c},{a,c}} 
T2={X,  ,{a},{b},{a,b}} 
F.OT1(X)={X,{a},{b},{c},{b,c}{a,c}} 
F.OT2(X)={X,{a},{b},{c},{a,b}} 
Let U={X,{a},{b},{a,b},{c},{b,c}} 
Then U is FpT-open cover  since U contains anonempty member of F.OT1(X) and 
anon empty member of  F.OT2(X) 
But U is not FpT2 –open cover 
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Theorem(3-8) 
let (X,T1,T2) be a bitopological space then FpT(3,3) –space is FpT(2,3)-space. 
then for every x in X and FpT3-open cover  U of X , there exist FpT3-open cover 

of X and uU such that F.st(X,V)U now since V is FpT3-open cover then V is 
FpT2-open cover by  

lemma(3-5)part (10).Then for every FpT3-open  cover ,there exist  FpT2-open 
cover satisfying the condition then X is FpT(2,3). 

 
Corollary(3-9)  
1- every FpT(2,k) –space is FpT(j,k)-space provided i>j and k constant  i,j ,k, 

{1,2,3} 
Proof:  the proof exist  by using lemma (3-6) part (1)and (2) . 
2-  every FpT(i,k)-space provided k<j and i constant i,j,k{1,2,3}.and the follow 

diagram is easy to prove 
 
 

Remark(3-10):- 
the convers of (1) and (2) of aremark above need not to be true , since from 

remark(3-6) and it is example  we can make sure an example of each one of FpT(i,k) 
and FpT(i , k ) –spaces by change of the value of i,j,k =1,2,3 and using the same 
covers of an examples remark(3-6). 
FpT(3,3)-space FpT(2,3)-space   FpT(1,3)-space 

 
FpT(3,2)-space  FpT(2,2)space FpT(1,2)-space 

 
FpT(3,1)-space   FpT(2,1)-space FpT(1,1)-space
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