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Abstract:  In this study, we present estimation scale parameter of 

Rayleigh distribution under data the control of type II by using 

methods Proposed Bayesian as only prior and Double priors with 

a new suggestion used three Prior by using distributions  

Exponential and  Gamma and Chi-Square. An experimental study 

was conducted to compare these methods and to demonstrate the 

efficiency of the methods proposed in practice by relying on the 

generated observations from Rayleigh distribution. We compare 

these methods by using Mean square error (MSE). We did this 

study by using simulation with different values parameter (θ) and 

different sample sizes (N=10, 25, 50, 100). It has been shown 

through computational results that the best way to estimate is the 

Bayes method proposed (BAY3). 

 

Keywords: Bayes Estimation, Exponential Distribution, Double 

Prior, Gamma Distribution, Chi-Square Distribution. 

I. INTRODUCTION 

Rayleigh distribution is important in various sciences and 

their applications in life. It has many uses in the medical and 

industrial field and used widely in wind monitoring and other 

applications [1]. Usually, when conducting life tests, the 

experimenter who is studying the tests may not be able to 

determine and observe the life of all elements tested. This issue 

is happening because of several different reasons, including 

time constraints or limitations on the number of failures during 

a test because the cost of experimenting elements is very 

expensive. When they are low and directly proportional to the 

number of failures observed, the experience to be monitored for 

failures is better and more effective and achieves less time and 

effort than the time controlled experiment. The researchers also 

knew the controlled experiment to fail in the name of Type II 

surveillance. In such a system a type II control system the test 

is terminated once the number of predefined failures (r) is of 

observed (n) units tested. 

Howlader and Hossain [2] in 1995 studied  Bayesian estimation 

and prediction from Rayleigh based on Type II censored data. 

Saleem and Aslam [3]  in the year 2008 studied the Prior 

Selection for the Mixture of Rayleigh Distribution using 

Predictive Intervals. In 2006   Daniels [4] studies Bayesian 

modelling of several covariance matrices and some results on 

the propriety of the posterior for linear regression. Moreover, 

Haq and Aslam [5] in 2009 studied the double prior selection 

for the parameter of the Poisson distribution.             

II. THEORETICAL STUDY 

A. Rayleigh Distribution 

Suppose T = t1, t2,. .., tm; is an uncensored observation from 

a sample of m units or individuals under examination. Also, 

assume that the uncensored observations data follow the 

Rayleigh model. Where the one - parameter Rayleigh  failure 

time distribution of θ has a probability density function ( pdf ) 

and a cumulative distribution function ( cdf ) given respectively 

by 

   𝑓 ( 𝑡; 𝜃) = 2𝜃𝑡 𝑒−𝜃𝑡 2    
, 0  ˂  𝑡 ˂   ∞, 𝜃 > 0                     (1) 

   𝐹 ( 𝑡; 𝜃) = 1 − 𝑒−𝜃𝑡 2    
,   𝜃 > 0                                         (2) 

And reliability function of Rayleigh distribution at time t is 

given by 

   𝑅𝑡 ( 𝜃) =  𝑒−𝜃𝑡 2    
, 0  ˂  𝑡 ˂   ∞, 𝜃 > 0                             (3) 

B. Type II Censoring Data [8]: 

Using this type of data mainly in clinical situations and the 

idea here is to choose (m) of the units such that m < n, n 

represents the size of the sample under study. Furthermore, the 

possible function for this type of data   is ranked in ascending 

order by the following formula: 

 𝐿 = (𝜃|𝑡1, 𝑡2, … , 𝑡𝑚, 𝑚) = 
𝑛!

(𝑛−𝑚)!
 ∏  𝑓(𝑡𝑖; 𝜃)[1 −𝑚

𝑖=1

𝐹(𝑡0 ; 𝜃)]𝑛−𝑚                                    (4)    

Such that  1 − 𝐹(𝑡0 ; 𝜃) = 𝑅(𝑡0 ; 𝜃)  represents the reliability 

function at the time  𝑡0  

𝑓(𝑡𝑖; 𝜃) represents the density function of failure 

(𝑛 − 𝑚) the number of units is a failed after time 𝑡0 
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For Rayleigh distribution, the “(4)” becomes as 

follows

  

𝐿(𝜃|𝑡1, 𝑡2, … , 𝑡𝑚, 𝑚) =
𝑛!

(𝑛−𝑚)!
 ( 2 𝜃 )𝑚  ∏ 𝑡𝑖

𝑚
𝑖=1  𝑒− 𝜃 ∑ 𝑡𝑖

2𝑚
𝑖=1 [𝑒− 𝜃 𝑡0

2 ]
𝑛−𝑚

                                

                  = 𝑊 ( 2 𝜃 )𝑚  ∏ 𝑡𝑖

𝑚

𝑖=1

 𝑒−𝜃(∑ 𝑡𝑖
2𝑚

𝑖=1 +(𝑛−𝑚) 𝑡0
2)      (5) 

When we take Log the two parties, and from the derivative 

second we get maximum likelihood estimator such that   𝑊 =
𝑛!

(𝑛−𝑚)!
                         ∴ �̂�𝑴𝑳𝑬 =

𝑚

∑ 𝑡𝑖
2𝑚

𝑖=1 +(𝑛−𝑚) 𝑡0
2                      (6) 

III. METHDES BAYESIAN  ESTIMATION 

A.GAMMA 𝐺(𝑎1, 𝑏1) DISTRIBUTION AS ONLY PRIOR (BAY1)  

  In this method, we will use one prior is a Gamma 𝐺(𝑎1, 𝑏1) 

distribution for parameter θ, its density function of Gamma is 

given by  V1(θ) =
θa1−1   b1

a1   e− θ b1 

ᴦ (a1)
 ,  

  θ > 0 ;  a1 and   b1 > 0                                                 (7) 

and  by using  “(5)”, and “(7)”, Then joint density function of  T 

and 𝜃 described in will be as follows 

 𝑓 ∗(t1, t2, … , tm, θ) = L(t1, t2, … , tm|θ) V1(θ) 

= W ( 2 θ )m  ∏ ti

m

i=1

 e−θ(∑ ti
2m

i=1 +(n−m) t0
2)

∗
θa1−1   b1

a1   e− θ b1 

ᴦ (a1)
   

 Let      K = ∑ ti
2m

i=1 + (n − m) t0
2        

Which is a Gamma distribution 𝐺(𝜔1, 𝛽1) with parameters  ω1 =
a1 − 1, β1 = K + b1   

 ∴   f ∗(t1, t2, … , tm, θ) =  2m W θm+𝛚𝟏  ∏ ti
m
i=1  e−θ 𝛃𝟏 ∗

   b1
a1   e− θ b1 

ᴦ (a1)
                                                                     (8) 

𝑓∗(𝑡1 , 𝑡2 , … . . 𝑡𝑚 ) = ∫ 𝑓∗( 𝑡 , 𝜃 ) 𝑑𝜃 
∞

0

=  ∫ 2𝑚 𝑊 𝜃𝑚+𝝎𝟏 ∏ 𝑡𝑖

𝑚

𝑖=1

  𝑒−𝜃 𝜷𝟏

∞

0

∗
   𝑒− 𝜃 𝜷𝟏 

ᴦ (𝑎1)
 𝑑𝜃  

by using transformation    𝑢 =  𝜃 𝛽1  ⟹    𝜃 =
𝑢

 𝛽1

     ⟹   𝑑𝜃

=  
 1

 𝛽1

 𝑑𝑢 

Hence 𝑓∗(𝑡1 , 𝑡2 , … . . 𝑡𝑚 ) =
2𝑚 𝑊   𝑏1

𝑎1  ∏ 𝑡𝑖
𝑚
𝑖=1

ᴦ (𝑎1)
 ∫  

𝑢 𝑚+𝝎𝟏

 𝜷𝟏
 𝑚+𝝎𝟏

 𝑒− 𝑢   
 1

 𝜷𝟏
 𝑑𝑢

∞

0
 

=
2𝑚 𝑊   𝑏1

𝑎1  ∏ 𝑡𝑖  ᴦ (𝑚 + 𝜔1 + 1)𝑚
𝑖=1

ᴦ (𝑎1)    𝛽1
 𝑚+𝝎𝟏+𝟏

             (9) 

By using (8) and (9), then density function of the posterior 

distribution of θ is given by 

  𝐻1
∗(𝜃 |𝑡1, … , 𝑡𝑚) =

𝑓∗(𝑡1 , … 𝑡𝑚 , 𝜃1)

𝑓∗(𝑡1 , … . . 𝑡𝑚 )

=
  𝛽1

 𝑚+𝝎𝟏+𝟏  𝜃  𝑚+𝝎𝟏    𝑒− 𝜃 𝜷𝟏  

ᴦ (𝑚 + 𝜔1 + 1)   
                         (10) 

By using the quadratic loss function  𝑐(  �̂� − 𝜃  )
2
 . Then Bayes' 

estimator will be the estimator that minimises the posterior risk 

given by 

 𝑅𝑖𝑠𝑘 (𝜃) = 𝐸[𝑐 (�̂�, 𝜃)]  = ∫ (  �̂� − 𝜃  )
2∞

0
   𝐻1

∗(𝜃 |𝑡𝑖)  𝑑𝜃1  ,   

𝐿𝑒𝑡 
𝜕 𝑅𝑖𝑠𝑘 (  𝜃 )

𝜕𝜃
= 0 

Then      �̂�𝐵𝐴𝑌1 = ∫ 𝜃 
∞

0
  𝐻1

∗(𝜃 |𝑡𝑖)  𝑑𝜃 =

∫
  𝛽1

 𝑚+𝝎𝟏+𝟏  𝜃 𝑚+𝝎𝟏+𝟏   𝑒− 𝜃 𝜷𝟏  

ᴦ (𝑚+𝝎𝟏+𝟏)   
 𝑑𝜃

∞

0
 

by using transformation    𝑢 =  𝜃 𝛽1  ⟹    𝜃 =
𝑢

 𝛽1

     

 ⟹   𝑑𝜃 =  
 1

 𝛽1

 𝑑𝑢 

�̂�𝐵𝐴𝑌1 =
  𝛽1

 𝑚+𝝎𝟏+𝟏   

ᴦ (𝑚 + 𝜔1 + 1)   
∫   [ 

𝑢

 𝛽1

 ]
𝑚+𝝎𝟏+𝟏

   
𝑒− 𝑢

 𝛽1

    𝑑𝑢

∞

0

 

∴ 𝜃𝐵𝐴𝑌1 =
ᴦ (𝑚 + 𝜔1 + 2)

ᴦ (𝑚 + 𝜔1 + 1)  𝛽1 
=

𝑚 + 𝜔1 + 1

  𝛽1 
               (11)  

 

B Double Priors by Using Exponential and Gamma 

Distributions ( BAY 2 )  

We will here use two density functions for two different 

distributions, the first prior distribution for Exponential 

Distributions of θ with a parameter with hyperparameter 𝑐1 , 
where it possesses ( pdf)  

V21(θ) =     c1  e− θ c1  , θ > 0 ;  c1  > 0                 (12) 

As second Prior Distributions of θ is density functions pdf for 

Gamma Distributions with hyperparameters 𝑎2 𝑎𝑛𝑑  𝑏2 ,  where 

it possesses ( pdf) 

𝑉22(𝜃) =
𝜃𝑎2−1   𝑏2

𝑎2   𝑒− 𝜃 𝑏2 

ᴦ (𝑎2)
 ,

𝜃 > 0 ;  𝑎2 𝑎𝑛𝑑  𝑏2 > 0               (13) 

By combining the two previous functions (12) and (13), we will 

define double prior for θ as follows 

𝑉𝑇1(𝜃) ∝ 𝑉21(𝜃) ∗ 𝑉22(𝜃) = 𝜃𝑎2−1  𝑒− 𝜃 (𝑐1+  𝑏2 )     (14)   

And by using  “(5)” and “(14)”, Then joint density function of        

T and 𝜽 described in will be as follows 

f ∗(t1, t2, … , tm, θ) = L(t1, t2, … , tm|θ) VT1(θ) 

         = W ( 2 θ )m  ∏ ti
m
i=1  e− θ K ∗ θa2−1  e− θ (c1+  b2 )       (15) 

= W 2m θm+𝛚𝟐  ∏ ti

m

i=1

  e− θ ( K+ c1+  b2 )               (16) 

Where 𝑲 = ∑ 𝑡𝑖
2𝑚

𝑖=1 + (𝑛 − 𝑚) 𝑡0
2 𝑎𝑛𝑑  𝝎𝟐 = 𝑎2 −

1 𝑎𝑛𝑑  𝜷𝟐 = 𝑐1 +   𝑏2 
 Hence from (16), we find marginal density function of T is 

given by  

 𝑓∗(𝑡1 , 𝑡2 , … . . 𝑡𝑚 )

=  2𝑚 𝑊 ∏ 𝑡𝑖

𝑚

𝑖=1

∫  𝜃𝑚+𝝎𝟐    𝑒− 𝜃( 𝐾 + 𝜷𝟐  )  𝑑𝜃
∞

0

  

by using transformation    𝑢 = 𝜃 ( 𝐾 +  𝛽2 ) ⟹  𝜃

=
𝑢

𝐾 + 𝛽2 
 ⟹  𝑑𝜃 =

𝑑𝑢

𝐾 +  𝛽2 
 

Hence 𝑓∗(𝑡1 , 𝑡2 , … . . 𝑡𝑚 ) =

2𝑚 𝑊   ∏ 𝑡𝑖
𝑚
𝑖=1  ∫  

𝑢 𝑚+𝝎𝟐

 ( 𝐾 + 𝛽2 ) 𝑚+𝝎𝟐
 𝑒− 𝑢   

 1

𝐾 + 𝛽2
 𝑑𝑢

∞

0
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=
2𝑚  𝑊    ∏ 𝑡𝑖  ᴦ (𝑚 + 𝜔2 + 1)𝑚

𝑖=1

(𝐾 +  𝛽2)𝑚+𝝎𝟐+𝟏
        (17) 

By using (16) and (17), then pdf of the posterior distribution of 

θ is given by 

  𝐻2
∗(𝜃 |𝑡1, … , 𝑡𝑚) =

𝑓∗(𝑡1 , … 𝑡𝑚 , 𝜃1)

𝑓∗(𝑡1 , … . . 𝑡𝑚 )

=
   𝜃  𝑚+𝝎𝟐+𝟏   𝑒− 𝜃(𝐾 + 𝛽2)  

ᴦ (𝑚 + 𝝎𝟐 + 𝟏)   
 , 𝜃 > 0     (18) 

By using the quadratic loss function  𝑐(  �̂� − 𝜃  )
2
 . Then Bayes' 

estimator will be the estimator that minimises the posterior risk 

given by 

 𝑅𝑖𝑠𝑘 (𝜃) = 𝐸[𝑐 (𝜃, 𝜃)]  = ∫ (  �̂� − 𝜃  )
2∞

0
   𝐻2

∗  (𝜃 |𝑡𝑖)  𝑑𝜃1  ,   

𝐿𝑒𝑡 
𝜕 𝑅𝑖𝑠𝑘 (  𝜃 )

𝜕𝜃
= 0 

Then  

�̂�𝐵𝐴𝑌2 = ∫ 𝜃 
∞

0
  𝐻2

∗  (𝜃 |𝑡𝑖)  𝑑𝜃 =

∫
   𝜃 𝑚+𝝎𝟐+𝟏   𝑒− 𝜃( 𝐾 + 𝛽2  )  

ᴦ ( 𝑚+𝝎𝟐+𝟏 )   
 𝑑𝜃

∞

0
      

Using the same previous conversion 

�̂�𝐵𝐴𝑌2

=
 (𝐾 + 𝛽2  )

 𝑚+𝝎𝟐+𝟏   

ᴦ (𝑚 + 𝜔2 + 1)   
∫   [ 

𝑢

𝐾 +  𝛽2  

 ]
𝑚+𝝎𝟏+𝟏

   
𝑒− 𝑢

𝐾 + 𝛽2  

    𝑑𝑢

∞

0

 

∴ 𝜃𝐵𝐴𝑌2 =
ᴦ (𝑚 + 𝜔2 + 2)

ᴦ (𝑚 + 𝜔2 + 1)   𝐾 + 𝛽2   

=
𝑚 + 𝜔2 + 1

 𝐾 + 𝛽2   
                         (19)  

C. Using Exponential and Chi-squarere Distributions as Double 

Priors (BAY 3) 

Consider the first prior distribution for Exponential 

Distributions of θ with hyperparameter 𝑐2 , where it possesses ( 

pdf)  

𝑉31(𝜃) =     𝑐2  𝑒− 𝜃 𝑐2  , 𝜃 > 0 ;  𝑐2  > 0            (20) 

The second Prior Distributions of θ is density functions pdf for 

Chi-squarere Distributions with hyperparameters 𝑎3  ,  where it 

possesses ( pdf) 

𝑉32(𝜃) =
𝜃

𝑎3
2

 − 1  𝑒− 
 𝜃 
2

  

2
𝑎3
2

  ᴦ (
𝑎3

2
)

 , 𝜃 > 0 𝑎𝑛𝑑 𝑎3 > 0        (21) 

We will define double prior for θ as follows 

𝑉𝑇2(𝜃) ∝ 𝑉31(𝜃) ∗ 𝑉32(𝜃) = 𝜃
𝑎3
2   𝑒− 𝜃(𝑐2+ 

1

2
   )                (22)   

And by using “ (5)”,  and “(22)”, Then joint density function of  

T and 𝜽 described in will be as follows 

𝑓∗(𝑡1, 𝑡2, … , 𝑡𝑚, 𝜃) = 𝐿(𝑡1, 𝑡2, … , 𝑡𝑚|𝜃) 𝑉𝑇2(𝜃) 

                       = 𝑊 ( 2 𝜃 )𝑚  ∏ 𝑡𝑖
𝑚
𝑖=1  𝑒− 𝜃 𝐾  ∗ 𝜃

𝑎3
2   𝑒− 𝜃(𝑐2+ 

1

2
   )     

= 𝑊 2𝑚 𝜃𝑚+𝝎𝟐  ∏ 𝑡𝑖

𝑚

𝑖=1

  𝑒− 𝜃(  𝐾+𝜷𝟑  )                                 (23)   

Where 𝐾 = ∑ 𝑡𝑖
2𝑚

𝑖=1 + (𝑛 − 𝑚) 𝑡0
2   𝑎𝑛𝑑  𝝎𝟑 =

𝑎3

2
  𝑎𝑛𝑑  

  𝛽3 = 𝑐2 +  
1

2
 

Hence from (23), we find marginal density function of T is 

given by  

 𝑓∗(𝑡1 , 𝑡2 , … . . 𝑡𝑚 )

=  𝑊 2𝑚 ∏ 𝑡𝑖

𝑚

𝑖=1

∫   𝜃𝑚+𝝎𝟐    𝑒− 𝜃(  𝐾+𝜷𝟑  )  𝑑𝜃
∞

0

  

by using transformation    𝑢 = 𝜃 ( 𝐾 +  𝛽3 ) ⟹  𝜃

=
𝑢

𝐾 + 𝛽3 
 ⟹  𝑑𝜃 =

𝑑𝑢

𝐾 +  𝛽3 
 

Hence 𝑓∗(𝑡1 , 𝑡2 , … . . 𝑡𝑚 ) =

2𝑚 𝑊   ∏ 𝑡𝑖
𝑚
𝑖=1  ∫  

𝑢 𝑚+𝝎𝟑

 ( 𝐾 + 𝛽3 ) 𝑚+𝝎𝟑
 𝑒− 𝑢   

 1

𝐾 + 𝛽3
 𝑑𝑢

∞

0
 

                                             

=
2𝑚  𝑊    ∏ 𝑡𝑖  ᴦ (𝑚 + 𝝎𝟑 + 1)𝑚

𝑖=1

(𝐾 +  𝛽3)𝑚+𝝎𝟑+𝟏
   (24) 

By using (23) and (24), then pdf of the posterior distribution of 

θ is given by 

  𝐻3
∗(𝜃 |t ) =

𝑓∗(𝑡1 , … 𝑡𝑚 , 𝜃1)

𝑓∗(𝑡1 , … , 𝑡𝑚 )

=
   𝜃  𝑚+𝝎𝟑  (𝐾 + 𝛽3)𝑚+𝝎𝟑+𝟏 𝑒− 𝜃(𝐾 + 𝛽3)  

ᴦ (𝑚 + 𝜔3 + 1)   
                         (25) 

By using the quadratic loss function  𝑐(  �̂� − 𝜃  )
2
  

Then      �̂�𝐵𝐴𝑌3 = ∫ 𝜃 
∞

0
  𝐻3

∗  (𝜃 |𝑡𝑖)  𝑑𝜃 =

∫
   𝜃 𝑚+𝜔3+1   𝑒− 𝜃(𝐾 + 𝛽3)  

ᴦ (𝑚+𝜔3+1)   
 𝑑𝜃

∞

0
 

Using the same previous conversion 

�̂�𝐵𝐴𝑌3

=
 (𝐾 + 𝛽3  )

 𝑚+𝜔3+1   

ᴦ (𝑚 + 𝜔3 + 1)   
∫   [ 

𝑢

𝐾 + 𝛽2  

 ]
𝑚+𝜔3+1

   
𝑒− 𝑢

𝐾 +  𝛽3  

    𝑑𝑢

∞

0

 

∴ 𝜃𝐵𝐴𝑌3 =
ᴦ (𝑚 + 𝜔2 + 2)

ᴦ (𝑚 + 𝜔2 + 1)   (𝐾 +  𝛽2  ) 

=
𝑚 + 𝜔3 + 1

 𝐾 +  𝛽3   
                                    (26) 

 

D. Using Exponential and Gamma and Chi-squarere 

Distributions as Three Priors  

In this method, we suggested using three different 

distributions as priors Distributions of  θ  with  hyperparameter 

 𝑎4 ,  𝑏4 , 𝑐3 Where it has (pdf) respectively as it comes .The first 

Prior distribution of θ to be exponential with hyperparameter  𝑐4  

𝑉41(𝜃) =     𝑐3  𝑒− 𝜃 𝑐3  ,
𝜃 > 0 ;  𝑐3  > 0                           (27) 

The second Prior Distributions of θ is density functions pdf for 

Gamma Distributions with hyperparameters 𝑎4,  𝑏4 ,  where it 

possesses ( pdf) 

𝑉42(𝜃) =
𝜃𝑎4−1   𝑏4

𝑎4   𝑒− 𝜃 𝑏4 

ᴦ (𝑎4)
 , 𝜃 > 0 ; 𝑎4 𝑎𝑛𝑑  𝑏4

> 0     (28) 
The three Prior Distributions of θ is density functions pdf for 

Chi - square Distributions with hyperparameters  𝑎4  ,  where it 

possesses ( pdf) 

𝑉43(𝜃) =
𝜃

𝑎4
2

 − 1  𝑒− 
 𝜃 
2

  

2
𝑎4
2

  ᴦ (
𝑎4

2
)

 , 𝜃 > 0 𝑎𝑛𝑑 𝑎4 > 0               (29) 

We will define three prior for θ as follows 

𝑉𝑇3(𝜃) ∝ 𝑉41(𝜃) ∗ 𝑉42(𝜃) ∗ 𝑉43(𝜃) =

𝜃
3𝑎4

2
 − 2  𝑒− 𝜃(𝑐3+ 𝑏4  + 

1

2
   )          (30) 
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And by using “ (5)”, and “(30)”, Then joint density function of  

T and 𝜃 described in will be as follows 

𝑓∗(𝑡1, 𝑡2, … , 𝑡𝑚, 𝜃) = 𝐿(𝑡1, 𝑡2, … , 𝑡𝑚|𝜃) 𝑉𝑇3(𝜃) 

                              =
𝑊 2𝑚 𝜃𝑚+𝝎𝟒  ∏ 𝑡𝑖

𝑚
𝑖=1   𝑒− 𝜃(  𝐾+ 𝜷𝟒  )              (31)   

Where 𝐾 = ∑ 𝑡𝑖
2𝑚

𝑖=1 + (𝑛 − 𝑚) 𝑡0
2   𝑎𝑛𝑑  𝜔4 =

3𝑎4

2
 −

2 𝑎𝑛𝑑   𝛽4 = 𝑐3 +  𝑏4   +  
1

2
 

Hence from (23), we find marginal density function of T is 

given by  

   𝑓∗(𝑡1 , 𝑡2 , … . . 𝑡𝑚 )  

=
2𝑚  𝑊    ∏ 𝑡𝑖  ᴦ (𝑚 + 𝝎𝟒 + 1)𝑚

𝑖=1

(𝐾 +  𝛽4)𝑚+𝝎𝟒+𝟏
      (32) 

By using (31) and (32), then pdf of the posterior distribution of 

θ is given by 

  𝐻4
∗(𝜃 |t ) =

𝑓∗(𝑡1 , … 𝑡𝑚 , 𝜃1)

𝑓∗(𝑡1 , … , 𝑡𝑚 )

=
  (𝐾 + 𝛽4)𝑚+𝝎𝟒+𝟏 𝜃  𝑚+𝝎𝟒   𝑒− 𝜃(𝐾 + 𝛽4)  

ᴦ (𝑚 + 𝜔4 + 1)   
                            (33) 

By using the quadratic loss function  𝑐(  �̂� − 𝜃  )
2
  

Then      �̂�𝐵𝐴𝑌3 = ∫ 𝜃 
∞

0
  𝐻4

∗  (𝜃 |𝑡𝑖)  𝑑𝜃 

∴ θ̂BAY4 =
m + ω4 + 1

 K + β4   
=

m +
3a4

2
 −  1

 K +  c3 +  b4   +  
1
2

 
               (34)  

IV. PRACTICAL ASPECT (SIMULATION) 

Formulation of a model simulation includes the following 

essential and important steps for estimation of the scale 

parameter of Rayleigh distribution that is respectively: 

a.  The initial values for the parameter θ  

This step is important upon which later steps depend. Then we 

assume the initial values (θ =1.5, 2.5, 3.5) for scale parameter θ 

of the of Rayleigh distribution.  

b.  Selected sample size (n) 

We chose different sizes of the sample proportionally to the 

effect of sample size on the accuracy and efficiency of the 

results obtained from the estimation methods used, so we take 

the sizes ( 25, 50,100 ). 

c.  The initial values for the time estimation of reliability 

function (t0): 

We take three values of the time  t0 = 1, 2, 3 

d.  Select values for the constants in the estimators: 

We take the value parameter 𝛽𝑖 and 𝜔𝑖 . All the results we took 

uniform values where hyperparameters                         𝑎𝑖 =
𝑏𝑖 =  𝑐𝑖  = 4   
e.  Step of data generation: 

In this step, the generation of Rayleigh distribution data using 

the inverse method is as follows 

𝐹 (𝑡𝑖; 𝜃) = 𝑈𝑖 = 1 −  𝑒−𝑡𝑖(𝜃−1)  ⟹ 

𝑡𝑖 = √
log  (𝑈𝑖 − 1)

𝜃
                                   

𝐹(𝑡𝑖; 𝜃) =The distribution function and Ui = Uniformly 

distributed random variable (0, 1)                 

f. Measure comparison :  We adopt the mean square error  

𝑀𝑆𝐸( �̂� ) =
∑ ( 𝜃�̂�−𝜃)

2𝑅
𝑖=1

𝑅
 Where R=1000 is the number of 

replications. The tables below show the results of the estimation 

using the simulation. Program the simulation written by 

(Mathlab-2015a). 

V. EXPLANATION RESULTS (CONCLUSIONS) 

The results of Table (I) of (III) show the following: 

 The results showed that the Bayes method by using 

Gamma distribution as Only Prior (BAY1) is best, 

especially in all size samples, because it has less (MSE).  

 Estimator that is used Exponential and Chi - square 

Distributions as Double Priors ( BAY 3 )  is second the 

best Especially in small samples N = 25 and at θ = 3.5 

because it contains a second lower mean square error 

(MSE). 

 We noted decreasing values of (MES) with an increasing 

sample size of all cases this corresponds to the statistical 

theory. 

 

 

 

 

 

 

 

 

 

 

 

TABLE I: MEAN SQUARED ERROR FOR �̂�  WHERE N=10 

BEST Bay4 Bay3 Bay2 Bay1 to Θ 

Bay1 
0.0224857 0.017006 0.034997 0.0165549 1 

 

 

1.5 

Bay1 
0.086300 0.014102 0.036218 0.0139557 2 

Bay3 
0.027976 0.0100464 0.038636 0.0101693 3 

Bay1 0.093120 0.031237 0.0399612 0.0300040 1 
 

 

2.5 

 

 

 

Bay3 0.0410449 0.0176044 0.0278309 0.01775658 2 

Bay3 0.050879 0.0188300 0.0393275 0.0189202 3 
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Bay1 
0.375175 0.0386313 0.177462 0.0378265 1 

 

 

5.3 

 

Bay3 
0.043894 0.0250840 0.0379011 0.025346 2 

Bay3 
0.035417 0.0231278 0.0316459 0.023436 3 

 

TABLE II: MEAN SQUARED ERROR FOR �̂�  WHERE N=25 

BEST Bay4 Bay3 Bay2 Bay1 to θ 

Bay3 
0.0078445 0.006444 0.031118 0.0065326 1 

 

 

1.5 

Bay3 
0.0080689 0.006583 0.034907 0.0066717 2 

Bay3 
0.0076303 0.0063117 0.0313638 0.0063986 3 

Bay3 0.0169965 0.0140683 0.0198577 0.01418949 1  

 

2.5 

 

 

 

Bay3 0.0136799 0.0120297 0.0184798 0.0121490 2 

Bay3 0.017694 0.0144670 0.0168570 0.0145859 3 

Bay3 
0.0274745 0.0233862 0.0263925 0.0234345 1 

 

 

5.3 

 

Bay3 
0.0294898 0.0244063 0.0281966 0.0245431 2 

Bay3 
0.0246371 0.0216045 0.0238394 0.0217613 3 

 

 
TABLE III: MEAN SQUARED ERROR FOR �̂�  WHERE N=50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BEST Bay4 Bay3 Bay2 Bay1 to θ 

Bay3 
0.0070254 0.0063724 0.030726 0.006479 1 

 

 

1.5 

Bay3 
0.0066435 0.0060710 0.0313102 0.0061166 2 

Bay3 
0.0068265 0.0062163 0.0310255 0.0062626 3 

Bay3 0.0155103 0.0140106 0.0195880 0.01411189 1 
 

 

2.5 

 

 

 

Bay3 0.0125634 0.01181003 0.0127633 0.0118734 2 

Bay3 0.0123304 0.0116213 0.01214055 0.0116859 3 

Bay3 
0.0253236 0.0232345 0.0248424 0.0234143 1 

 

 

5.3 

 

Bay3 
0.0237245 0.0221182 0.0233267 0.0221183 2 

Bay3 
0.0216926 0.0205229 0.0213905 0.0206068 3 
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TABLE  IV: MEAN SQUARED ERROR FOR �̂�  WHERE N=100 

 

BEST Bay4 Bay3 Bay2 Bay1 to θ 

Bay3 
0.005752 0.0055400 0.029179 0.0055625 1 

 

 

1.5 

Bay3 
0.0063147 0.0060370 0.0310944 0.0060607 2 

Bay3 
09.006444 0.0061525 0.0308526 0.0061764 3 

Bay3 0.0138874 0.0133225 0.0183423 0.1335690 1  

 

2.5 

 

 

 

Bay3 0.0128871 0.0114391 0.0125735 0.0124730 2 

Bay3 0.0117948 0.0114609 0.0117062 0.0114931 3 

Bay3 
0.022436 0.0217074 0.022258 0.02175111 1 

 

 

5.3 

 

Bay3 
0.0212187 0.0206288 0.0210701 0.2067237 2 

Bay3 
0.0204037 0.0198996 0.0202733 0.0199424 3 
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