Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(20): 2012

S-open set in Bitopological space

Samah Abd Al-hadi Abbass

Babylon University College of science For women Computer Department

Abstract

The primary purpose of this paper is to introduce and study a new types of open sets called S-open sets , continuous , separation axioms are study with respect to the new open set .

-S (X,P1,p2)

Introduction

A triple (X,p_1,P_2) where X is anon empty set and P_1,P_2 are topologies on X, is called abitopological space and kelly [Kelly ,1963] initiated the study of such spaces. after that more mathematician working on the new space bitopological spaces deferent sets are defined and study in it.

if A be a subset of X, the interior (resp. closure) of A with respect to the topology pi (i = 1, 2) will be denoted by int $_{pi}(A)$ (resp. cl $_{pi}(A)$).

The purpose of this paper is to define S-open sets and define separation axioms and continuous function associated S-open sets in bitopological spaces and investigate some of their properties and relations and its effects on some theorems and properties .

1-preminaries

in this section we define s-open set and we give some basic remark on it .

Definition(1-1):

Let (X,p1),(X,p2) are two topologicl on X asubset A of X is said to be S-openset in (x,p1,p2) iff A= int $p_1(U \cap V)$ such that U,V are p_2 -openset .the complement of S-open set is called S-closed set

Example(1-1)

Let X={a,b,c} ,p1={x , \emptyset , {a}, {c}, {a,c}},p2={X, \emptyset , {b}, {a,c} S.O(X)={X, \emptyset , {a,c}}

Theorem(1-1):

The family of all S-open set is a topological space

Proof:

- a) Ø and X is clearly that S-open set
- b) Let G1,G2 two S-open sets Then G1=int $p_1(U \cap V)$, G2=int $p_1(U1 \cap V1)$, Where U,V,U1,V1 are p2-open sets then G1 \cap G2 = int $p_1(U \cap V) \cap int p_2(U1 \cap V1) = int p_1(W \cap H)$ where W=U \cap U1 H=V \cap V1 Then G1 \cap G2 is S-open set

مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٢) / المجلد (٢٠) : ٢٠١٢

c)Let \land be any index and $G\lambda$ is S-open set for every $\lambda \in \land$, then

 $G\lambda$ = intp1(U λ ∩V λ) for some U $_{\lambda}$ and V $_{\lambda}$ be p₂-open sets then

 $U \ G\lambda = U \ int \ p1(U\lambda \cap V\lambda) = int p1(U(U\lambda \cap V\lambda)) = int p1[(U_{\lambda \in \wedge}(U\lambda)) \cap (U_{\lambda \in \wedge}(V\lambda))]$

Since $U_{\lambda \in \wedge}(U\lambda)$ and $(U_{\lambda \in \wedge}(V\lambda)$ be p2-open sets

Then $U_{\lambda \in} \wedge G\lambda$ is s-open set

Remark(1-1):

1/If A is S-open set then it is P_1 -open set .and the convers is not true 2/ If A is S-open set and B is P_1 -open set then $A \cap B$ and AUB are P_1 -open set

2- S-separation axioms and continuous function

In this section we will define separation axioms with respect to s-open sets. **Definition(2-1)**:

Abitopological space is said to be S-T0-space iff for each two distinct points x,y in X there exist s-open sets U such that $x \in U$, $y \notin U$ or there exist S-open set $y \in W$, $x \notin W$.

Definition(2-2):

Abitopological space is said to be S-T₁-space iff for each two distinct points x,y in X there exist two s-open sets U and W such that $x \in U$, $y \notin U$, $y \notin W$, $x \notin W$.

Theorem(2-1):

let (X, P_1, P_2) be a bitopological space then X is S-T₁-space iff $\{x\}$ is S-closed set for each x $\in X$.

Proof: see [sharma,1963]

Definition(2-3):

Abitopological space is said to be S-T₂-space iff for each two distinct points x,y in X there exist two s-open sets U and W such that $x \in U$, $y \in W$, and $U \cap W = \phi$

Definition(2-4):

Abitopological space is said to be S-regular-space iff for each points x in X and Sclosed set H such that $x \in H$ there exist two s-open sets U and W such that $x \in U$, $H \subset W$, $U \cap V = \phi$

Definition(2-5):

Abitopological space is said to be $S-T_3$ -space iff the bitoplogical space is $S-T_1$ and S-regular

Definition(2-6):

Abitopological space is said to be S-normal-space iff for each two S-closed sets H and F, such that $H \cap F=\phi$ there exist two s-open sets U and W such that $F \in U$, $H \subset W$, and $U \cap W=\phi$

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(20): 2012

Definition(2-7):

Abitopological space is said to be S-T₄-space iff the bitoplogical space is S-T₁ and S-normal .

Theorem(2-2): let (X, P_1, P_2) be abitopological space

If (X, P_1, P_2) is S-T_i-spase, i=0,1,2 then (X, P_1) is T_i-space where ,i=0,1,2 Proof: Exist by definition

Exist by definition

- the following diagram explain that the relation between the above separation axioms

Examp(2-1): Let X={ a,b,c} and P₁=D, D is the discrete topology on X which is T_i-space for i=0,1,2. $P_2={X, \emptyset, {a}, {b}, {a,b}}, S.O(X)=P_2$ then (X,P_1,P_2) is not S-T_i-space for i=0,1,2.

$$\begin{split} & \text{Example(2-2)} : \text{let } X = \{a,b,c,d\} \text{ and} \\ & P_1 = \{X, \emptyset, \{a\}, \{c\}, \{b\}, \{a,c\}, \{a,b\}, \{b,c,d\}, \{c,d\}, \{a,b,c\}, \{a,c,d\}\} \\ & P_2 = \{X, \emptyset, \{\{a\}, \{c\}, \{b\}, \{c,d\}, \{a,c\}, \{b,c\}, \{b,c,d\}, \{a,c,d\}\} \\ & \text{S.O(X)} = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a,c\}, \{a,b\}, \{b,c\}, \{c,d\}, \{a,b,c\}, \{a,c,d\}\} \\ & \text{Then clearly that } (X,P_1,P_2) \text{ is } S-T_2 \text{ but not } S-T_3 \end{split}$$

Example(2-3) : let X={a,b,c,d} and P₁=D P₂={X, \emptyset , {a},{c},{d},{a,d},{c,d},{a,b},{a,c},{b,c},{a,b,d} {a,b,c},{a,c,d}} S.O(X)={ X, \emptyset , {c},{a},{d},{a,b},{a,c},{a,d},{c,d},{a,d,b},{a,b,c} {a,c,d}}

Then clearly that (X, P_1, P_2) is S-T₃ but not S-T₄

Example (2-4) : let X={a,b,c,} and P₁={X, \emptyset ,{a},{c},{a,c}}, P₂={X, \emptyset , {{a},{c},{a,c},{b,c}} S.O(X)={X, \emptyset ,{a},{c},{a,c}} Then clearly that (X,P₁,P₂) is S-T₀ but not S-T₁

3- S-continuous functions

Now we define S-continuous function with some theorems on it we study . Definition(3-1):

A mapping f:(X, P₁, P₂) \rightarrow (Y, P*₁, P*₂) is said to be S-continuous iff the inverse image of each S-open set in Y is P₁-open set in X **Theorem(3-1):**

If f: $(x, P_1) \rightarrow (Y, P^*)$ is continuous then f: $(X, P_1, P_2) \rightarrow (Y, P^*) \rightarrow (Y, P^*)$ is S-continuous

مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٢) / المجلد (٢٠) : ٢٠١٢

Proof

Let A is S-open set in Y then A is P_1 -open set and since f is continuous then $f^1(A)$ is P_1 -open set and there for f is S-continuous.

Example (3-1) Let X={a,b,c}, P₁={X,Ø,{a},{b,c}}, P₂={X,Ø,{a},{a,c}} Y={1,2,3}, P₁^{*}={Y,Ø,{1},{2},{1,2}} P₂^{*}={Y,Ø,{2}} Let g: (X, P₁, P₂) \rightarrow (Y, P*₁, P *₂) defined by g(a)=2, g(b)=1, g(c)=3 Then clearly that g is S-continuous but not P₁-P₁ - continuous **Remark(3-1)**:

The composition of two S-continuous functions is not S-continuous functions since not every P_1 -open set is S-open set

Definition(3-2):

Amapping f:(X, P₁, P₂) \rightarrow (Y, P*₁, P*₂) is said to be 1/S-open map iff f(u) is S-open set in Y for each S-open set U in X 2/S-homeomorphism map iff f is 1-1,onto, S-continuous and S-open map

Definition (3-3):

Amapping f:(X, P₁, P₂) \rightarrow (Y, P*₁, P*₂) is said to be s-inn map iff the inverse image of each S-open set in Y is S-open set in X.

Theorem (3-2): if f:(X, P₁, P₂) \rightarrow (Y, P*₁, P*₂) is S-inn map then f is S-continuous map:

Proof: let U is S-open set in Y then $f^{1}(U)$ is S-open set in X and since every S-open set is p1-open set then $f^{1}(U)$ is p1-open set then f is S-continuous.

Example (3-2)

Let $X=\{a,b,c\}$, $P_1=\{X,\emptyset,\{a\},\{c\},\{a,c\}\}$, $P_2=\{X,\emptyset,\{a\},\{a,c\}\}$ $Y=\{1,2,3\}$, $P_1=D$, D is the discrete topology on X. $P_2^*=\{Y,\emptyset,\{2\},\{1\},\{1,2\}\}$ Let g: $(X, P_1, P_2) \rightarrow (Y, P_{1_1}, P_{2_2})$ defined by g(a)=1, g(b)=3, g(c)=2Then clearly that g is S-continuous but not S-inn map **Theorem(3-3):** let (X, P_1, P_2) be a bitopological space if X is S-T_i where ,i=0,1,2 then X is a topological properties with respect to S-T_i Proof: Exist by definition

Remark(3-2)

let (X, P_1, P_2) be a bitopological space

1- S- T_i , i=3,4 is not topological properties

2- if f:(X, P₁, P₂) \rightarrow (Y, P*₁, P *₂) is S-inn map then T_i-space ,i=3,4 is a topological property.

Definition(3-4) : let (X, P_1, P_2) be abitopological space and Y be asubset of X then T_Y is the collection given by

 $P_{iY} = \{D \cap Y : D \text{ is } S \text{-open set}\}$ then (Y, P_{1Y}, P_{2Y}) is called subspace of (X, P_1, P_2) .

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(20): 2012

Theorem (3-4): let (X, P_1, P_2) be a bitopological space S-T_i, i=1,2,3 are hereditary property.

Proof : see [Sharama, 1963] only we replace open set by S-open set .

Example(3-3)

Let $X=\{a,b,c\}$, $P_1=\{X,\emptyset, \{a\}, \{c\}, \{a,b\}\}$ $p2=\{X,\emptyset\}$ $Y=\{1,2,3\}$, $P*_1=\{Y, \emptyset, \{2\}, \{3\}, \{1,3\}, \{2,3\}\}$ S.O(Y)= $\{Y, \emptyset, \{1\}, \{3\}, \{1,3\}\}$ $P*_2=\{Y, \emptyset, \{2\}, \{1,3\}\}$ f:X \rightarrow Y defined by f(a)=3 ,f(b)=1 ,f(c)=2 then f is S-continuous and P_1 . $P*_1$ continuous

Example (3-4)

For the obove example if we define f as follow f(a)=2, f(b)=3, f(c)=1 then f is not S-continuous since $f^{1}(\{1,3\})=\{b,c\}$ which is not P₁-open set

References

Al-talkany. Y.K , Lelo. S.A, "study of some topological concepts in bitopological spaces", journal of karbala ,2007.

Sharama, J.N, "Topology" Meerut college, Meerut. 1977.

Kelly. J.C, , "Bitopological Spaces", Pro...c. London Math. Soc. (3)13,pp 71-89.1963.