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Abstract 
        In this work we search the chaotic behavior for the  Rossler system through 
employment  sensitive depends on initial condition by using the software (Matlab) we get 
sensitive depends on initial condition (chaos) by varying the parameter of system. 

 الخلاصة
 sensitive) مــن خــلال الاعتمــاد علــى الشــروط الابتدائیــة (Rossler Systemفــي هــذا العمــل درســنا الســلوك الفوضــوي لنظــام روســیلر (

dependent on initial condition) ولهـذا الغـرض اسـتخدمنا برنـامج (Matlab) وأجر�نـا تغیـرات فـي قـیم المعـالم (Parameters لهـذا (
 النظام.

1-Introduction 
Rossler systems  is  introduced  in the 1970s as  prototype equations with the  minimum  

ingredients  for  continuous times  chaos.  
Since the Poincar´e-Bendixson   theorem precludes  the existence  of  other than  steady 

periodic, attractors in  au tonomous  systems  defined  in  one-  or  two -dimensional manifolds 
such as  the line, the circle, the plane, the sphere,  or the torus (Hartman, 1964), the minimal 
dimension for chaos is three. On this basis, Otto Rossler came  up with a series of prototype 
systems of ordinary differential equations in three-dimensional phase spaces (Rossler 1976a,c, 
1977a, 1979a).  systems He also proposed four-dimensional  for  hyper chaos, that is chaos with 
more than  one  positive Lyapunov exponent (Rossler 1979a,b). 

Rossler was  inspired by the geometry of flows in dimension three and, in particular, by 
the re-injection principle, which is based on the feature of relaxation-type systems to often present 
a Z-shaped slow manifold in their phase space. On this manifold, the motion is slow until an edge 
is reached  whereupon  the  trajectory  jumps to the other branch of the manifold, allowing not 
only for periodic relaxation oscillations in dimension two, but also for higher types of relaxation 
behavior as noted by Rossler (1979a). In dimension three, the re-injection can induce chaotic 
behavior if the motion is spiraling out on one branch of manifold). In this way, Rossler invented a 
series of systems, the most famous of which is probably (Rossler 1979a). 
2-In this section we study the chaotic behavior of Rossler system depend on the definition of 
Gulick which is referred to in section two. 
2- Definition  
In this section we introduce many fundamental definitions we use in this work 
• Definition 1 [Periodic attracting] 

Let x be a periodic –n point for a function f then x is attracting period-n point if x 
is an attracting fixed point of fn [Gulick,1992 ]                                                                                              
• Definition 2 [ lyapunov expoent] 

Let J be abounded interval, and f:J→J continuously  differentiable on  J. fix x in J 
,and let λx be defined by  
λx=Lim  1/n  (1 )……(x) ׀f(n) ׀
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n→∞ 
provided that the limit exist . in that case λx is the lyapunov exponent of f at x 
[Gulick,1992]  
• Definition 3 [sensitive dependent on initial condition] 

Let J be an interval, and f:J→J  has asensitive dependent on initial condition  if 
ther exist  ξ>0   such that for any x Є J and any neighborhood N of x ,ther exist yЄN and 
n>0 such that  
 ξ   [Deveny,1989]< ׀ fn(x)-fn(y)  ׀
• Definition 4 [Chaoic] 
       A function f is Chaoic   if satisfies at least one of the follwing conditions      
(i)  f  has appositive  lyapunov exponent at each point in its domain 
(ii)  f has a sensitive dependent on initial condition on its domain   [Gulick,1992]      

• Definition 5 [Capacity and Fractal dimension ] 
Let S be subset of Rn,wher n=1,2 or 3 the capacity dimention of S  is given by  Dim cS 
=Lim  ln(N(Є)/ln(1/Є) …….(2) 
 Є→0 
If the limit exist and  is not integer then S is said to be  have Fractal dimension   
[Gulick,1992]      
• Definition 6  [Bifurcation ] 
Consider the differential equation : 
x. =fμ(x) ……..(3) 
one is especially concerned how the phase portrait of (3)  chang as μ varies ,A value μ0 
where there is a basic structural change  in this phase portrait is called a bifurcation point  
[Gulick,1992]      
• Definition 7  [Bifurcation  diagram ] 
       One method of displaying the points at which a parameterized  family of function { 
fμ} bifurcates and is designed to give information about the behavior of higher interates 
of  arbitrary  member of the domain of fμ  for all value of parameter μ  [Gulick,1992]      
3-Rossler Model 

Rossler was able to obtain the simplest nonlinear vector field capable of 
generating chaotic behavior [Rossler,1976]see however, [Sprott,1994] This attractor is 
written in the following form : 
x˙=-x-y  
y˙= x+ay …….(4) 
z˙=b+z(x-c) 
such that it has a single nonlinear term xz in z˙ . 
By fixing a and b in the value a=b=0.2, one has a 
period-doubling  route to chaos where a period-2 orbit is created at c=2.6, and being 
c~4.2 the accumulation point of the period doubling cascade, beyond which one has 
deterministic chaos, excepting for the presence of a number of periodic windows. The 
system has an unstable fixed point near the origin whose 2D unstable manifold 
presumably spans the strange attractor. It appears that the strange attractor does not 
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exhibit a remerging tree (or period-doubling reversal) [Stone,1993], at least for not too 
large values. 
4-Description of Plots  
In Fig.(1) one can see the scatter-plots for the Rossler attractor.    
     The left column of plots Fig. (1a,1c and 1e) are the results for the new algorithm, 
whereas the column on the right-hand side, Fig.( 1b, 1d and 1f) shows the results for the 
Wolf algorithm. Both plots 1a and 1b have the x-coordinate of the Rossler attractor as 
abscissa. Analogously, plots 1c and 1d have the y-coordinate of the Rossler attractor as 
abscissa and plots 1e and 1f the z-coordinate. The ordinate of all cases is the value of the 
positive local Lyapunov exponent λ1 (t).  

Fig. ( 2 ) shows the pair wise Renyi spectra corresponding to the plots of Figs. (1.) 
The dashed line is the spectrum for the Wolf algorithm and the full line for the new one. 
Specifically, parts Rossler a, Rossler b and Rossler c denote for the pairs of spectra that 
correspond to the pairs of point sets (1a,1b), (1c,1d), (1e,1f), respectively [Grond and 
Diebner,2005]. 
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Fig. (1) Plots of the x-, y-, and z-coordinates of the Rossler attractor against the local 
Lyapunov exponent k1. The left column (a, c, and e) shows the results for the new 
algorithm, the right column (b, d, and f) for the Wolf algorithm. 
 
 
 

 
 
 
 
 
 

Fig. 2. Plots of the Renyi spectra computed from the point sets of Figs. 1 and 2. The left 
column shows the results for the Rossler attractor, The curve corresponding to the Wolf 
algorithm is shown as the dashed line. The full line belongs to the new variant. 

 
Fig.(3) show scatter plots of all three local exponents λ1 (t), λ2 (t), λ3 (t) that have 

been computed for the Rossler attractors. Again, the two parts on the left-hand side show 
the results for the new algorithm and those corresponding to the Wolf algorithm on the 
right. 

Fig(4) shows the Renyi spectra computed from the point clouds of  Figs.( 3.) The 
dashed lines denote for the Wolf algorithm, as before. Fig.(4a) corresponds to Fig.(3) and 
Fig.( 4b ) the curve belonging to the new one, can be observed for small values in three 
cases (Figs. 2 c, and 4b). In general, the calculation of the fractal dimension  is less robust 
(which is between the information dimension and the capacity dimension), as discussed 
in [Kantz andSchreiber,2002]. Systematic errors have to be taken into account in those   
cases. There are some cases where the dashed line (corresponding to Wolf_s algorithm) 
increases as a function of q (Figs.  2 b, 2c, and 4a) which indicate systematic errors 
[Ground,2005] . 
 
 
 
 
 
 

fig.(3) 
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5-Attractor and Bifuraction of Rossler  Systems : 

Let us start by briefly describing two typical solutions to the Rössler system 
[Rossler,1976] readingas  (4) where (a, b, c) are the bifurcation parameters. The Rössler 
system has two fixed points given by : 
x=± ( c ± √c2 − 4ab)/2 
y = ±(c ± √c2 − 4ab)/ 2a ……(5) 
z=± (c ± √c2 − 4ab)/2a 
 
For a = 0.432, b = 2 and c = 4, the Rössler system has a chaotic attractor for solution (Fig. 
5a). According to Farmer et al. [Farmer and Crutchfield andFroeling and Pachard ,1980], 
we designate this attractor as the spiral attractor. This attractor is characterized by a first-
return map to the Poincaré section. For three-dimensional systems such a section is 
defined by the plane : 
P ≡ {(yn, zn) ∈ R2|xn = x-, ˙xn > 0} …. (6) 
       Thus, the map is constituted by an increasing monotonic branch and a decreasing 
branch separated by the critical point located at the maximum (Fig. 5b). The critical point 
defines the generating partition of the attractor which allows the encoding of all periodic 
orbits embedded within the attractor [ Letellier and Dutertre and Maheu,1995] The 
increasing branch is close to the bisecting line and, consequently, the symbolic dynamics 
is almost complete. A two-symbol symbolic dynamics  [ Devaney ,]  is complete when all 
periodic orbits which can be encoded with these two symbols are solutions to the Rössler 
system. Thus, for a=0.432, most of periodic orbits encoded with two symbols are 
embedded within the attractor generated by the Rössler system. 
         When the bifurcation parameter a is increased, new periodic orbits are created and 
the chaotic attractor increases in size (Fig. 6b). The corresponding first-return map is 
constituted by more than two branches and, for a = 0.556, up to eleven monotonous 
branches may been identified [Letellier and Dutertre and Maheu,1995]. The 
corresponding attractor is designated as the funnel attractor [Farmer and Crutchfield 
andFroeling and Pachard ,1980]. For a greater than 0.556, there is metastable chaos, that 
is the trajectory visits the neighborhood of the unstable periodic orbits solution to the 
Rössler attractor before being ejected to infinity [Letellier and Dutertre and Maheu,1995]. 
The dynamics of 

 fig. (4) 
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the Rössler system can therefore be investigated for a < 0.556, b and c remaining 
constant. 
       A bifurcation diagram synthesizes the evolution of the dynamics under the change of 
the bifurcation parameter a (Fig7). The bifurcation parameter a is varied over the interval 
[0.432, 0.556]. It will be shown that quite a similar bifurcation diagram is obtained when 
the discretization time step h of the discretization of the Rössler system is increased. 
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Fig. (5). Spiral attractor generated by the Rössler system (5) with the bifurcation 
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parameters (a, b, c) = (0.432, 2, 4). 
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Fig.( 6 ). Funnel attractor generated by the Rössler system (5) with the bifurcation 

parameters (a, b, c) = (0.556, 2, 4). 
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Fig. (7). Bifurcation diagram vs. the bifurcation parameter a of the Rössler system 
(5). Part (a) corresponds to values smaller than 0.432 here used 

as a reference and (b) for values larger than this reference. 
 

 
 
 
6-Sensitive dependent on initial condition of Rossler System : 
  In this section we study the chaotic behavior of Rossler system is depend on 
definition of Gulick which is refered to in section two. 

New , we study the sensitivity to initial condition of system (4) by verying the 
control parameters (a,b,c) by using (matlab) to analysis of view for sensitivity dependent 
on initial condition .this jop show as appendix New concider the system (4) we get 
sensitivity to initial condition on the initial point (xi,yi,zi) as follows (i=1,2)  
(i)  (0,0,0.01) and (0.03,0,0.01) with parameter a=10,b=2,c=8 as show in fig (8). 
 
 
 
 
 
 
 
 
 
 
 (ii) ( 0,0,0.01) and (0.01,0,0.01) with parameter a=10,b=2,c=8 as show in fig (9) . 
 
 
 
 
 
 
 
 
 
 
(iii) (0,0,1,0.01) and (0.1,0.1,0.01) with parameter a=0.2,b=0.2,c=6.7 as show in fig (10). 
 
 
 

Fig (8) 

Fig (9) 
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(iv) ( 2.05,4,6) and (2, 4,6) with parameter a=0.55,b=2,c=6 as show in fig (11) 
 
 
 
 
 
 
 
 
 
 
 
(v) ( 0.1,0,0.3) and (0.1,0.2,0.3) with parameter a=1,b=2,c=4 as show in fig.(12). 
 
 
 
 
 
         
 
 
 
 
But,when we change the parameter, we did not get any sensitive to the above initial 
condition as show in fig(13,14). 
 
 
 
 
 

Fig (10) 

Fig (11) 

Fig (12) 
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