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Abstract
In this work we search the chaotic behavior for the Rossler system through
employment sensitive depends on initial condition by using the software (Matlab) we get
sensitive depends on initial condition (chaos) by varying the parameter of system.
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1-Introduction

Rossler systems is introduced in the 1970s as prototype equations with the minimum
ingredients for continuous times chaos.

Since the Poincar’e-Bendixson theorem precludes the existence of other than steady
periodic, attractors in au tonomous systems defined in one- or two -dimensional manifolds
such as the line, the circle, the plane, the sphere, or the torus (Hartman, 1964), the minimal
dimension for chaos is three. On this basis, Otto Rossler came up with a series of prototype
systems of ordinary differential equations in three-dimensional phase spaces (Rossler 1976a,c,
1977a, 1979a). systems He also proposed four-dimensional for hyper chaos, that is chaos with
more than one positive Lyapunov exponent (Rossler 1979a,b).

Rossler was inspired by the geometry of flows in dimension three and, in particular, by
the re-injection principle, which is based on the feature of relaxation-type systems to often present
a Z-shaped slow manifold in their phase space. On this manifold, the motion is slow until an edge
is reached whereupon the trajectory jumps to the other branch of the manifold, allowing not
only for periodic relaxation oscillations in dimension two, but also for higher types of relaxation
behavior as noted by Rossler (1979a). In dimension three, the re-injection can induce chaotic
behavior if the motion is spiraling out on one branch of manifold). In this way, Rossler invented a
series of systems, the most famous of which is probably (Rossler 1979a).
2-In this section we study the chaotic behavior of Rossler system depend on the definition of
Gulick which is referred to in section two.

2- Definition
In this section we introduce many fundamental definitions we use in this work
e Definition 1 [Periodic attracting]

Let x be a periodic —n point for a function f then x is attracting period-n point if x

is an attracting fixed point of " [Gulick,1992 ]
e Definition 2 [ lyapunov expoent]

Let J be abounded interval, and f:J—J continuously differentiable on J. fix x in J
,and let Ax be defined by
ax=Lim 1/n 1f% (x)......(1)
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n—aoo
provided that the limit exist . in that case Ax is the lyapunov exponent of f at x
[Gulick,1992]
¢ Definition 3 [sensitive dependent on initial condition]

Let J be an interval, and f:J—J has asensitive dependent on initial condition if
ther exist &0 such that for any x € J and any neighborhood N of x ,ther exist yEN and
n>0 such that
| f'(x)-f"(y) 1 >¢ [Deveny,1989]

e Definition 4 [Chaoic]
A function f is Chaoic if satisfies at least one of the follwing conditions
(i) T has appositive lyapunov exponent at each point in its domain
(if) f has a sensitive dependent on initial condition on its domain [Gulick,1992]
e Definition 5 [Capacity and Fractal dimension ]
Let S be subset of R",wher n=1,2 or 3 the capacity dimention of S is given by Dim S
=Lim In(N(€)/In(1/€) ....... (2)
€—0

If the limit exist and is not integer then S is said to be have Fractal dimension
[Gulick,1992]
¢ Definition 6 [Bifurcation ]
Consider the differential equation :
X =fuy(X) ........ (3)
one is especially concerned how the phase portrait of (3) chang as p varies ,A value o
where there is a basic structural change in this phase portrait is called a bifurcation point
[Gulick,1992]
e Definition 7 [Bifurcation diagram ]

One method of displaying the points at which a parameterized family of function {
f.} bifurcates and is designed to give information about the behavior of higher interates
of arbitrary member of the domain of f, for all value of parameter p [Gulick,1992]
3-Rossler Model

Rossler was able to obtain the simplest nonlinear vector field capable of
generating chaotic behavior [Rossler,1976]see however, [Sprott,1994] This attractor is
written in the following form :

X =-X-y
y=xtay ... 4
7 '=b+z(x-c)

such that it has a single nonlinear term xz inz "

By fixing a and b in the value a=b=0.2, one has a

period-doubling route to chaos where a period-2 orbit is created at ¢c=2.6, and being
c~4.2 the accumulation point of the period doubling cascade, beyond which one has
deterministic chaos, excepting for the presence of a number of periodic windows. The
system has an unstable fixed point near the origin whose 2D unstable manifold
presumably spans the strange attractor. It appears that the strange attractor does not
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exhibit a remerging tree (or period-doubling reversal) [Stone,1993], at least for not too
large values.

4-Description of Plots

In Fig.(1) one can see the scatter-plots for the Rossler attractor.

The left column of plots Fig. (1a,1c and 1e) are the results for the new algorithm,
whereas the column on the right-hand side, Fig.( 1b, 1d and 1f) shows the results for the
Wolf algorithm. Both plots 1a and 1b have the x-coordinate of the Rossler attractor as
abscissa. Analogously, plots 1c and 1d have the y-coordinate of the Rossler attractor as
abscissa and plots 1le and 1f the z-coordinate. The ordinate of all cases is the value of the
positive local Lyapunov exponent A1 (t).

Fig. ( 2) shows the pair wise Renyi spectra corresponding to the plots of Figs. (1.)
The dashed line is the spectrum for the Wolf algorithm and the full line for the new one.
Specifically, parts Rossler a, Rossler b and Rossler ¢ denote for the pairs of spectra that
correspond to the pairs of point sets (1a,1b), (1c,1d), (1e,1f), respectively [Grond and
Diebner,2005].
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Fig. (1) Plots of the x-, y-, and z-coordinates of the Rossler attractor against the local
Lyapunov exponent k1. The left column (a, ¢, and e) shows the results for the new
algorithm, the right column (b, d, and f) for the Wolf algorithm.
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Fig. 2. Plots of the Renyi spectra computed from the point sets or rigs. L ana 2. 1ne ieft

column shows the results for the Rossler attractor, The curve corresponding to the Wolf
algorithm is shown as the dashed line. The full line belongs to the new variant.

Fig.(3) show scatter plots of all three local exponents A1 (t), A2 (t), A3 (t) that have
been computed for the Rossler attractors. Again, the two parts on the left-hand side show
the results for the new algorithm and those corresponding to the Wolf algorithm on the
right.

Fig(4) shows the Renyi spectra computed from the point clouds of Figs.( 3.) The
dashed lines denote for the Wolf algorithm, as before. Fig.(4a) corresponds to Fig.(3) and
Fig.( 4b ) the curve belonging to the new one, can be observed for small values in three
cases (Figs. 2 c, and 4b). In general, the calculation of the fractal dimension is less robust
(which is between the information dimension and the capacity dimension), as discussed
in [Kantz andSchreiber,2002]. Systematic errors have to be taken into account in those
cases. There are some cases where the dashed line (corresponding to Wolf_s algorithm)
increases as a function of q (Figs. 2 b, 2c, and 4a) which indicate systematic errors
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Fig. 4. Scater plots of 1, ve i, vs L, forthe Rossler atractor. The lefl pant belongs to dhe new algornbm ond the right aneto the Wall
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[Rossler,1976] readingas (4) where (a, b, c) are the bifurcation parameters. The Rdssler
system has two fixed points given by :

x=+ (¢ + Vc2 — 4ab)/2

y=+(c+Vc2—4ab)/2a ... (5)

7=+ (c + Vc2 — 4ab)/2a

Fora=0.432, b =2 and c = 4, the Rdssler system has a chaotic attractor for solution (Fig.
5a). According to Farmer et al. [Farmer and Crutchfield andFroeling and Pachard ,1980],
we designate this attractor as the spiral attractor. This attractor is characterized by a first-
return map to the Poincaré section. For three-dimensional systems such a section is
defined by the plane :

P = {(yn, zn) €R2|xn = x-, 'xn >0} .... (6)

Thus, the map is constituted by an increasing monotonic branch and a decreasing
branch separated by the critical point located at the maximum (Fig. 5b). The critical point
defines the generating partition of the attractor which allows the encoding of all periodic
orbits embedded within the attractor [ Letellier and Dutertre and Maheu,1995] The
increasing branch is close to the bisecting line and, consequently, the symbolic dynamics
is almost complete. A two-symbol symbolic dynamics [ Devaney,] is complete when all
periodic orbits which can be encoded with these two symbols are solutions to the Rossler
system. Thus, for a=0.432, most of periodic orbits encoded with two symbols are
embedded within the attractor generated by the Rossler system.

When the bifurcation parameter a is increased, new periodic orbits are created and
the chaotic attractor increases in size (Fig. 6b). The corresponding first-return map is
constituted by more than two branches and, for a = 0.556, up to eleven monotonous
branches may been identified [Letellier and Dutertre and Maheu,1995]. The
corresponding attractor is designated as the funnel attractor [Farmer and Crutchfield
andFroeling and Pachard ,1980]. For a greater than 0.556, there is metastable chaos, that
is the trajectory visits the neighborhood of the unstable periodic orbits solution to the
Rossler attractor before being ejected to infinity [Letellier and Dutertre and Maheu,1995].
The dynamics of
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the Rossler system can therefore be investigated for a < 0.556, b and ¢ remaining
constant.

A bifurcation diagram synthesizes the evolution of the dynamics under the change of
the bifurcation parameter a (Fig7). The bifurcation parameter a is varied over the interval
[0.432, 0.556]. It will be shown that quite a similar bifurcation diagram is obtained when
the discretization time step h of the discretization of the Rdssler system is increased.
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Fig. (5). Spiral attractor generated by the Rossler system (5) with the bifurcation
gyo



() 2=l / A dpkatll 5 38 pall & glall / JiL Gasls Alaa

narameters (A h oY =(0432 2 4)

[ ]

—
IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|III

|

-4 -2 ] 2 4 &

i
G0

o

-0

-
Tl

i
Ln

L o

—

e i

A ey R Ay

L

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIII L 1 1 1 1 1.1
-1 4 3 _4 5 6

|

b - N



3

3

-

~

L

/

(VA) alaal

rall aglall /s

L4
[]

9 49
Yelo -
narameters (a. h. ¢) = (0.556. 2. 4).

w e

daandail)

Ry AP G R R e ﬂﬁﬁﬁijwnn
FECT ..r...:...“.,!..mr o u...r ».ﬁ_r..w..
o R AR e 2 Y
o, .l.u.lu.n.. 5 uIL-_. 15 JL. 43
ICEE e b s "|+.. L
i e MRS DL i T
ST e e LR
ert ST g T, A Loy
T e T o 13«3.1&?.
s e R ..,..,...r .....rq_.._... - g n...__f._"_...ﬁ.u..,.“ﬂ_._...: k)
gt ._.-.1._. ST B TR T H:nw._n.- Ce
i e - ..p.}ﬁ.iwi..._: H 4tk

J

ki

.35

IIII.IIIIIJIIIIIIlIIJI.II

AL :
Biturcation parameter a

PR ...... e 3 ...: U .r....r.l-u..._. arl
Catlal [y L ._.u 1 . . l_..
e .m._:.. __._.. Sl ...E.u......“"...-unv.a_.:....v.r
S :__.1. Eipg s T T g ¥ S
...l..r“...... - ......r.. ....1..1 PR ety r
...“..i,.._w gL b _J.L_...,ft..
ey ...f_..._ diEmtl Bt _.L.f'a_
_ ry i.,.,u_...f sl e r..._._._ﬂ..l __
.._} LT B e e ..f.. L
e St e h..E._.._ ..n....._..".__.

s Eha .Tu....u.o..w_..r.a el
b Rl ST 2 e BRI
T .._.._.. u_.,....,...._ ﬁﬂ% m.%

T
|.-\.|

i3

Bifurcation parameter «
E
‘-_

(.45

i
if

ek s e e B e b

0,46

Fig.( 6 ). Funnel attractor generated by the Rdssler system (5) with the bifurcation
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Fig. (7). Bifurcation diagram vs. the bifurcation parameter a of the Rossler system
(5). Part (a) corresponds to values smaller than 0.432 here used
as a reference and (b) for values larger than this reference.

6-Sensitive dependent on initial condition of Rossler System :

In this section we study the chaotic behavior of Rossler system is depend on
definition of Gulick which is refered to in section two.

New , we study the sensitivity to initial condition of system (4) by verying the
control parameters (a,b,c) by using (matlab) to analysis of view for sensitivity dependent
on initial condition .this jop show as appendix New concider the system (4) we get
sensitivity to initial condition on the initial point (xi,yi,zi) as follows (i=1,2)

(i) (0,0,0.01) and (0.03,0,0.01) with parameter a=10,b=2,c=8 as show in fig (8).

Fig (8)
(i1) (0,0,0.01) and (0.01,0,0.01) with parameter a=10,b=2,c=8 as show in fig (9) .

Fig (9)
(iii) (0,0,1,0.01) and (0.1,0.1,0.01) with parameter a=0.2,b=0.2,c=6.7 as show in fig (10).
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Fig (10)
(iv) (2.05,4,6) and (2, 4,6) with parameter a=0.55,b=2,c=6 as show in fig (11)

«10™

Fig (11)
(v) (0.1,0,0.3) and (0.1,0.2,0.3) with parameter a=1,b=2,c=4 as show in fig.(12).

Fig (12)

But,when we change the parameter, we did not get any sensitive to the above initial
condition as show in fig(13,14).

AR




() 22l / dgndaill 5 48 pall a slall / 1L Gaals Alaa

Fig (13) Fig (14)
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