Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(25): 2017

Study the impact of using Lock-free buffer to
communicate the DOACROSS loop iterations

Esraa H.A. Alwan
Computer science
Cellege of science for women -Babvlon University
wsci.israa hadi@uobabylon edu.ig
Isr phd /@ omail com

Abstract

Communication dependency overhead becomes the biggest obstacle that facing the parallelizing loops
contaiming loop-carried dependencies such uz DOACEOSS loop. Although of a substantial rezearchesz had
been devoted to this field, the problem still far from =olved.

Thiz work introduces a FastForward circular lock-free gueue algonthm to communicate the
dependency between DOACROSS loop tterations. Instead of giving each iteration of DOACROSS loop to
thread as in the original methods, group of iterations will be given to each thread So to ensure correct
results, the dependence between threads must be respected and for parallelism to be effective, the overhead
on core-to-core communication must be as low as possible.

Experimental resuliz are implemented on Intel Core 17 processor that kas 4GB RAM running SUSE
operating system show performance improvements of the proposed DOACROSS approach. An evaluation
of this technique on four programs with a range of dependence pattems lead to = 0.9 speed up.

Keywerds: DOACROSS, Lock-free buffer, Parallelizing techniques, Multicore

Cilypod BuToaals S8 SIS pRl fediady s iilafleel 1wl Ciladad | S odafaell s imdaghe o8 (I 3 Sa T SET

s el o s illle 418550 of Wb flaa® s 3 ke ol S sl deeadl e am e i e Byplen Basbaas T ild

i

Aulaetl A8 e aia el soilafee oo Slagea® G UEY Gyt (g0 el Eieh es alasid O3 epn il
A3 A Y Bl e e Crlagle (B AR D ARl onl S ) im0 daalall A

T fagea ST AT N Core i7 Byl fe Xeala e LWEET 25l ®h e lale lpan

0-9 4l 280 =85 rpant 9 iy

Silalleall 32Tl binla® ol md 2o SlaE - Dl Gy BT S daaliil mlalsh
I. Introduction

Raising the sequential application performance required manv improvements in both
commodity hardware systems and compiler optimization techmiques. A range of
microarchitectural techniques that have been used to enhance the performance of single
thread applications m a highly effective way. These techniques include the superscalar
1ssue, out-of-order execution, on-chip caching. and deep pipelines supported by
sophisticated branch predictors (Spracklen and Abraham 2005; Rangan 2008).

A new strategy has been introduced by processor desioners which mnvolved steadily
increasing in the number of transistors, through which many cores are placed m one chip
to replicate the performance of a single faster processor.

Multicore systems have become a domunant feature i computer architecture. Chips
with 4. 8, and 16 cores are available now and higher core counts are promised.
Unfortunately single-threaded legacy application does not achieve better performance

1241



Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(25): 2017

when it 15 executed on multicore system. However the level of gain becomes lugher with
software techmques which are parallehzing the sequential application to get better
performance (Matthew Bridges 2008; Adve 2010).

Parallelizing single threaded application by converting it to multi-threaded
application that can be used most of the cores in multi-core architecture become the most
mmportant current research topics. Traditional parallelizing techniques such as DOALL
and DOACROSS work through distribution the loop iterations among many cores
(Matthew Bridges 2008) While the DOALL techmiques improve the program
performance when applied in the numencal field, the overhead of communicating the
dependency between threads in DOACROSS techmque 15 so large and can be negated
any advantage due to the lack of hardware support for inter-core communication.

In this paper. we study the inpact of using a Fastforward lock-free buffer method
on DOACROSS techmque. Fastforward circular lock free buffer has been used to
communicate the dependency between thread without anv lock where the producer and
consumer can reach the queue concurrently. Unlike the a lock-based approach. such as
pthread mutex lock which can negate any benefit from the parallelizing due to their
overhead. The rest of this paper 1s structured as follows: the next section (II) introduces
the background for DOACROSS technique, then section IT explain how can be using the
Fastforword lock free buffer to parallelize the DOACROSS technique. Section IV shows
the implementation of the proposed method. 'V presents some experimental results from
the application of the manual transformation Finally 1n section VI, we survey related
work and conclude .

II. Background

DOACROSS 15 the most popular Cyelic Multi-Threading (CMT) transformation.
This technique tries to execute the loop body in parallel even in the exist the cross
dependency between 1t is iterations. This technique works similarly to DOALL, see
figure 1. by giving each iteration to a thread and these threads are executed on multi-core
in round-robin fashion In contrast with the DOALL technique, however, there are data
and control dependencies crossing loop steration boundanies.

1242



Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(25): 2017

)
Q
L]
=
0

ore 2

00¢
HO0000

Figure 1: DOALL technique. Adapted from (Raman,2009)

Therefore, to get correct results the dependency should be respected and the
synchronization should be in the right order so as to ensure that the following iteration
receives the correct value (Chen, 2010; Rajamony,1997). With the increased number of
cores integrated on the same die, the communication latencies between them become
more significant, with their values ranging from a few tens of cycles to even a few
hundreds. As a result, this leads to reduced performance of CMT, for unlike with
Independent Multi-Thread (IMT) the increased number of threads in the system does not
always lead to a linear increase in performance. Figure 2 shows an example of this
technique. DOACROSS schedules each loop iteration on an alternate thread and
comtmunicates the dependency from thread to thread in a cyclic fashion due to the pointer
chasing i statement A. Set of odd steration will be given to the first thread while the rest
will be given to the second one (Unniknishnan et al _2012;Zhong 2001). The total time to
execute the DOACROSS parallelized loop equals:

Lpar = —* (L; +SC) (1)

where n represents the number of loop iterations, m the number of available
threads, irerl, irer2, iter3, iterd represent loop iterations, Li the execution time for one
loop tteration

1243



