
10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 1/16

Parallel Genetic Algorithm for Optimizing
Compiler Sequences Ordering
International Conference on New Trends in Information and Communications
Technology Applications

NTICT 2020: New Trends in Information and Communications Technology Applications
pp 128-138 | Cite as

Manal H. Almohammed (1)
Ahmed B. M. Fanfakh (1) Email author (ahmed.badri@uobabylon.edu.iq)
Esraa H. Alwan (1)

1. Department of Computer Science, College of Science for Women, University of
Babylon, , Hillah, Iraq

Conference paper
First Online: 13 August 2020

38 Downloads

Part of the Communications in Computer and Information Science book series (CCIS,
volume 1183)

Abstract

Recent compilers provided many of optimization passes, thus even for expert
programmers it is really hard to know which compiler optimization among several
optimizations passes can improve program performance. Moreover, the search space for
optimization sequences is very huge. Therefore, finding an optimal sequence for even a
simple code is not an easy task. The goal of this paper is to find a set of a good
optimization sequences using parallel genetic algorithm. The method firstly classifies the
programs into three clusters then applying three versions of genetic algorithms each one
to cluster in parallel. In order to enhance the result, the migration strategy between these
three algorithms is applied. Three optimal sequences at the same time are obtained from
this method. However, the proposed method improved the execution time on average by
87% compared with the O2 optimization flag. This method also outperforms the
sequential version of genetic algorithm on average of the execution time by 74.8% in
case of using Tournament selection and 72.5% in case of multi-selection method. LLVM
framework is used to validate and execute the proposed method. In addition, Polybench,
Standerford, Shootout benchmarks are used as case study to verify the effectiveness of
the proposed method.

https://link.springer.com/
https://link.springer.com/conference/ntict
https://link.springer.com/book/10.1007/978-3-030-55340-1
mailto:ahmed.badri@uobabylon.edu.iq
https://link.springer.com/bookseries/7899

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 2/16

Keywords

Phase ordering Compiler optimization Parallel genetic algorithm Performance
Download conference paper PDF

1 Introduction

Recentcompilers introduce a large number of optimizations such as elimination dead
code, replacing certain methods/functions with superior versions, reordering code block,
numbering global value, factor, etc. In particular, the order of applying these
optimizations can affects the form of code for subsequent optimization phases. However,
any optimization applied to the code may improve one or more of the performance
metrics such as power, code size, and execution time. Some times when using these
optimizations for the program, these optimizations interact with each other in a complex
way. This interaction can affect program performance or may produce bad or incorrect
code. This problem is known as the phase ordering problem [1]. Therefore, standard
compilers introduced optimization levels that are applied for a fixed order, or in some
pre-set order that seems to produce comparatively good results. However, many authors
have shown that the performance of the application depends mainly on the choice of
optimizations by selecting the best order. In the literature, each group of passes with
certain order called sequence of passes. Therefore, selecting automatically the best
ordering of compiler optimization for any program is difficult task and has significant
importance in field of the compiler for a long time [2].

Many researchers have been proposed heuristics and meta-heuristics methods to solve
the problem of passes ordering see [3] and [4]. To solve this problem, we proposed in
this paper a method to find global optimization sequences of passes and be
comprehensive for all programs that give free of interaction and dependency. In our
previous work [5], the proposed method uses performance counters to classify the
benchmark to three classes. Then, genetic algorithm was executed on each class
sequentially. Where each algorithm works independently from each other. However, in
this work parallel genetic algorithms are proposed by applying migration strategy to
improve the obtained results. This paper is organized as follows: the next Sect. (2)
describes how to extract performance events from the performance counter. Section (3)
describes the proposed method where the implementation of parallel Genetic Algorithm
(PGA) has been explained. Section (4) presents the experimental results obtained from
the application of the proposed method. Finally, in Sect. (5), some of the related works
have been introduced and the last section, Sect. (6), displays the conclusions and future
work.

2 Related Work

https://link.springer.com/content/pdf/10.1007%2F978-3-030-55340-1_9.pdf

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 3/16

T. Satish Kumar et al. present parallel Genetic algorithm that selected the compiler flags
to optimize code for multicore CPUs. To compare and test the performance, three
methods had been adopted. The first methods compiled the benchmark without applying
optimization. The second used randomly selected optimization flags and finally, the
compiler optimization levels had been set using parallel genetic algorithm [7]. Pan and
Eigenmann [8] introduce a new algorithm called Combined Elimination (CE) which is
able to tune the program performance by picking the optimizations passes that can
improve the program performance. It can get better or comparable performance with less
time to tune the optimization sequence. Kulk arni et al. [9] proposed a comprehensive
search strategy to find the best optimization sequences for each of the functions in a
program. The relationship between different phases is calculated automatically by doing
a comprehensive analytic to these phases. According to these analytical results the
execution time is reduced. Cooper, Schielke, and Subramanian [10] used a method to
minimize the code size. They used a genetic_algorithm_based approach to find best
sequences. Triantafyllis et al. [11] proposed an iterative compilation which is applying
various optimization configuration on the same program code segment. Then a
comparison among different versions of optimized code segment has occurred and the
best one will be chosen. In [12] two complementary general methods described to reduce
the search time for finding the optimization sequence using genetic algorithm (GA). The
search time is reduced in the first method by avoiding the unnecessary execution of the
application. While in second method the same results achieved by modifying the search
using a fewer number of generations. The proposed method mainly different from other
methods by applying the migration strategy synchronously in parallel.

3 Feature Extraction Using Performance
Counter

The information extracted from the performance counter called performance event,
which represents the dynamic behavior of the programs. These events consider an
important aspect of program improvement, for example, instructions, cache_references,
emulation_faults, and others [6] and [7]. On the other hand, these events are an event-
oriented portability tool, which can be used to help in solving forward improvement and
troubleshooting service [2]. The use of performance counters is attractive because they
do not limit the program class, which the system is able to handle. As a result, our system
(strategy) can find a good compiler optimization sequence for any program.

4 Proposed Method

In this paper, parallel genetic algorithms are proposed to work on each cluster. Each one
used different genetic selection method depending on the offline decision and
experiments. Each selection method decided to each cluster by running the genetic
algorithm three times one for each cluster. However, for the three different clusters there
are three different versions of genetic algorithms that used different selection methods.
Moreover, these three genetic algorithms are executed synchronously in parallel, each

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 4/16

one executed over different core of the CPU. Thus, multi-core architecture of the CPU is
used to run the three algorithms in parallel using message passing interface (MPI) under
C language. MPI is the widest parallel library that works under C or Fortran [13, 14].
Migration strategy is applied to all parallel system by sending the best solutions between
the algorithms after some iterations. This strategy used to improve the results by
increasing the search space diversity. The resultant of the best sequence for each cluster
can be considered as an optimization sequence for any unseen program similar to the
features of that cluster.

Table 1 presents the features used in our approach. The first column lists the perf events;
the second column gives the used type.

Table 1.

The used features in the proposed approach

Event Type

Cpu-cycles or cycles, instructions, Cashe- references, Cashe-misses,
Bus_cycles

Hardware
event

Cpu_clock(msec), Task_clock(msec), Page- faults OR faults, Context-
switches, Cpumigrations, Alignment-faults, Emulationfaults

Software
event

L1-dcashe-loads, L1-dcashe-loads misses, L1-dcashe-stores, L1-dcashe-
storesmisses, L1-icashe-loads, L1-icashe-loadsmisses, L1-icashe-loads, L1-
icashe-loads misses, L1-icashe- prefetches, L1-icasheprefetches –misses,
LLC-load, LLC-loadsmisses, LLC-strores, LLC-strores misses, LLC-prefetch-
misses, Dtlb-loads, Dtlb-loadsmisses, Dtlb-store, Dtlb-store-misses, Dtlb
prefetches, Dtlb-prefetches -misses, Itlb -loads, Itlb –loads -misses, Branch-
loads, Branch-loads-misses

Hardware
cache
event

Sched:sched-stat-runtime, Sched:sched-pi-setprio,
Syscalls:sys_enter_socket, Kvmmmu:kvm_mmu_pagetable_walk

Tracepoint
event

Stalled_cycles-frontend, Stalled_cycle- backend
Dynamic
event

Sched:sched_process_exec, Sched:sched_process_frok,
Sched:sched_process_wait,Sched:sched_process_wait_task,
Sched:sched_process_exit

Tracepoint
event

The following is the outline of the proposed method:

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 5/16

1-Extracting performance events by using compiler -O0.

2-Computed the similarity for each program used in this method as follows:

where p and pi represent the base program and other programs respectively [15].

3-The programs are divided into three clusters according to them similarity
results.

4-Running the three genetic algorithms over each cluster synchronously in
parallel.

5-Iteratively, migration is applied after a predefined number of generations
between the algorithms during parallel execution.

6-Determining the best sequence for each cluster after finishing the execution of
all genetic algorithms.

7-For any new unseen program, its similarity is computed by extracting its
features and comparing them with the features of all clusters.

8-Then, the new unseen program can be matched with the most similar cluster
and the optimization sequence of that cluster can be used to optimize the unseen
program. Figure 1 illustrate the structure of the proposed method.

Sim(p, pi) =
Pw × Piw∑

m

w=1

(Pw∑m

w=1)2 (Piw∑m

w=1)2
− −−−−−−−−−−

√
− −−−−−−−−−−−−−−−−−−−−−

√

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 6/16

Fig. 1.

The structure of the proposed method

More details about the proposed method are presented as follows:

Step 1: Extracting the Features of the Program

In this method, 60 programs are used where each program collected 52 events. For
getting more accuracy, each program executed three times and the average is computed
for 52 events. Therefore, the similarity of each program’s features with the features of
other programs is computed. Depending on the resultant similarity, clustering methods
can be applied, for more details about this step see [5].

Step 2: Parallel Genetic Algorithm for Sequence
Optimization (PGA)

Genetic algorithm is a metaheuristic search method used to optimize the candidate
solutions based on the Darwin evolution principles [6] and [7].In this work, the genetic
algorithm is applied to the problem of optimizing sequence ordering. The diversity of the
solutions in the genetic algorithm depends mainly on many aspects such as selection,

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-55340-1_9/MediaObjects/494840_1_En_9_Fig1_HTML.png

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 7/16

crossover, mutation methods, and them rates used. One of the most important factors to
increase the diversity of the solution in the search space of the genetic algorithm is the
migration strategy. Its main idea has subdivided the population of the algorithm into
multiple populations and applying migration of the best solution of each population with
other ones. The major drawback of this strategy is the high computational cost. To tackle
this problem and increasing the diversity of the solutions, three genetic algorithms
applying migration strategy are applied synchronously in parallel. Each algorithm, works
on specific cluster using different selection operator. Offline experiments are executed to
decides the best selection method for each cluster depending on its feature. The selection
method in the first algorithm was stochastic universal while in the second algorithm used
Rowlett wheel and tournament selection used in the third algorithm. Algorithm (1) is
describe the general framework of the three algorithms.

The algorithm used integer representation for the generated chromosomes by maximum
length of 64 genes. Each gene can represent a number that may match a pass. To
generate variable length chromosomes, the zero-integer value is used to represent the no-
pass state. Whereas, the others genes can take an integer number from 1 to 64 which
corresponding a specific pass.

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-55340-1_9/MediaObjects/494840_1_En_9_Figa_HTML.png

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 8/16

Step 3: Application of the Migration Between the Three
Algorithms

Three parallel genetic algorithms are executed synchronously in parallel over real four-
core processor. Three cores are selected to run the three algorithms in parallel using
message passing primitives. Moreover, point-to-point communication functionsare used
to apply the migration model. Figure 2 shows the migration model between the three
parallel algorithms.

Fig. 2.

The migration model

MPI_Send() and MPI_Recv communication primitives of MPI are used to migrate the
selected individuals between the algorithms during the execution time of the parallel
system. After a specific number of iterations, migration is applied between the
algorithms.

At each algorithm, three individuals are selected randomly and the best one is the
migrated individual. Each received individual from the migration is replaced with worst
individual selected from a random group of five individuals if its fitness is better from the
later individual.

5 Experiments

5.1 The Experimental Setup

This work uses LLVM compiler infrastructure and Linux perf tool to validate the
proposed method. Message passing library MPI v3.0.2 has been used to program and
execute the parallel algorithms. The LLVM Clang (c language frontend) is used to
transform the c source code of each program into IR code which is saved in bitcode
machine-readable file format (.bc). O2 optimization level is used to measure the
effectiveness of the resulted sequences. Next, following in this section a discusses of the
results that is obtained from applying the proposed method to programs selected from
three benchmarks and comperes it with the previous work [5].

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-55340-1_9/MediaObjects/494840_1_En_9_Fig2_HTML.png

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 9/16

The proposed method uses a collection of 64 LLVM optimizations passes to find a
sequence that will give the best or close to optimal execution time for each cluster. In the
proposed method, three populations have been initialized, each one uses a population
size equal to 100, the probability of crossover is 0.5, the mutation is 0.01, the ratio of
occurrence gene 0.4, the standard deviation for the stopping criteria is 0.01. Moreover,
the migration is applied after 10 generations. The maximum chromosome length used in
all algorithms is equal to 64 genes.

5.2 Experimental Results

This section presents the results of the proposed parallel genetic algorithms for
optimizing the complier sequence ordering problem. To verify the accuracy and the
achievement of the proposed parallel framework, two genetic algorithms that used two
different strategies are compared with the proposed method. The first algorithm is used
tournament selection, uniform crossover and one-point mutation for all clusters. The
algorithm executed three times to obtained the results, we refer to this algorithm TSGA.
The second algorithm different from the first one only in the selection method used. This
algorithm used different selection methods, where each one is selected to fit the feature
of each cluster. The Stochastic universal sampling, Roulette wheel, and Tournament
selections methods are used for clusters 1,2,3 respectively. Thus, we refer to this
algorithm as MSGA. Figures (3, 4, 5) show the comparison results of the proposed
parallel genetic algorithm (PGA) with TSGA and MSGA. Figures also presents the
comparison of the three algorithms with the standard optimization flag -O2.

Fig. 3.

Comparison of the execution time between TSGA, MSGA, PGA and the O2
in the first cluster.

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-55340-1_9/MediaObjects/494840_1_En_9_Fig3_HTML.png

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 10/16

Fig. 4.

Comparison of the execution time between TSGA, MSGA, PGA and the O2
in the second cluster.

Fig. 5.

Illustrates the comparison of the execution time between TSGA, MSGA,
PGA, and the O2 in the third cluster.

The obtained results show that the proposed method gives better results, less execution
time, compared to all other methods. This due to the high diversity that introduced from
applying the proposed migration strategy in parallel. Moreover, the proposed parallel
version reduces the execution time compared to the MSGA algorithm by 3.7. This ratio is
the speedup factor that computed as the ration of the sequential execution time divided
by the parallel one.

The average of the execution time for all the four methods are computed and presents in
the Table 2. The best optimization sequence resulted from each algorithm is presented in
Table 3.

Table 2.

The comparison of the execution time between O2,TSGA, MSGA and PGA

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-55340-1_9/MediaObjects/494840_1_En_9_Fig4_HTML.png
https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-55340-1_9/MediaObjects/494840_1_En_9_Fig5_HTML.png

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 11/16

Cluster name O2 TSGA MSGA PGA

Cluster 1 4.49 3.84 3.77 0.02

Cluster 2 5.35 2.23 1.78 1.60

Cluster 3 5.15 1.66 1.55 0.32

Table 3.

Best optimization sequence of the second scenario for each cluster

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 12/16

Cluster
No.

Best optimization sequence

Cluster
1

-domtree -loop-reduce -mergereturn -sink -gvn -lcssa -loop-simplify -licm -
loop-rotate -gvn -instcombine -lcssa -indvars -lowerinvoke -simplifycfg -loop-
unroll -indvars -lazy-value-info -dse -loop-instsimplify -targetlibinfo -basiccg -
memdep -sccp -globalopt -indvars -simplifycfg -ipconstprop -gvn -scalar-
evolution -argpromotion -loop-unswitch -lcssa -early-cse -domtree -
lowerswitch -loop-deletion -tailcallelim -early-cse -lower-expect -indvars -
loop-rotate -gvn -partial-inliner -reassociate -loop-unroll -lowerswitch -dse -
loop-simplify -loops -inline -constprop -loop-simplify -loop-instsimplify -strip-
dead-prototypes -globaldce

Cluster
2

-inline -lowerinvoke -scalar-evolution -tailcallelim -gvn -loop-rotate -indvars -
codegenprepare -inline -mergereturn -ipconstprop -codegenprepare -
mergereturn -targetlibinfo -loop-instsimplify -argpromotion -instcombine -
constmerge -mergefunc -lowerinvoke -lower-expect -constprop -loop-unswitch
-licm -instsimplify -tailcallelim -partial-inliner -constprop -lcssa -reassociate -
basiccg -lowerswitch -basicaa -loop-instsimplify -instsimplify -simplifycfg -
lcssa -mergereturn -scalar-evolution -inline -deadargelim -loop-simplify -strip-
dead-prototypes -codegenprepare -loops -instcombine -constprop -dse -
lowerswitch -lowerinvoke -simplifycfg

Cluster
3

-loweratomic -constmerge -gvn -inline -loop-idiom -globaldce -memcpyopt -
constmerge -dce -deadargelim -lower-expect -indvars -gvn -instcombine -
memdep -gvn -ipsccp -prune-eh -lowerswitch -licm -ipconstprop -loop-idiom -
early-cse -reassociate -constmerge -domtree -simplifycfg -inline -lazy-value-
info -inline -memcpyopt -instsimplify -deadargelim -argpromotion -strip-
dead-prototypes -tbaa -basiccg -simplifycfg -functionattrs -tbaa -lcssa -loop-
simplify -mergereturn -loop-instsimplify -argpromotion -codegenprepare -
memcpyopt -loop-deletion -loop-reduce -early-cse -adce -correlated-
propagation -simplifycfg

6 Conclusion

This paper described using parallel genetic algorithm to discover the best optimization
sequence. Each genetic algorithm runs over one core. Migration was applied between the
populations. The proposed method gave three optimal sequences at the same time.
Moreover, the proposed method compared with two different sequential versions of
genetic algorithm. The comparison results showed that the proposed parallel version
outperforms the other two version of the genetic algorithm due to migration strategy
used in parallel.

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 13/16

1.

2.

3.

4.

LLVM infrastructure has been used to validate the proposed method. The experiment
results obtained indicate the effectiveness of the proposed method when it compared
with the earlier work [5]. Moreover, each obtained sequence for a cluster of programs can
be used as a guided sequence for the new unseen program. The similarity was computed
between the features of the unseen program with features of the each cluster. Therefor
the sequence of the most similar cluster is used to optimize the unseen program. In the
future, more programs can be used to expand the number of clusters. Thus, the accuracy
of the computed similarity between programs’ clusters and the unseen program can be
increased. Moreover, the parallel implementation of the genetic algorithm will expand to
consider the other genetic operators such as crossover and mutation.

References

Sher, G., Martin, K., Dechev, D.: Preliminary results for neuroevolutionary
optimization phase order generation for static compilation. In: Proceedings of the
11th Workshop on Optimizations for DSP and Embedded Systems, pp. 33–40
(2014)
Google Scholar (https://scholar.google.com/scholar?
q=Sher%2C%20G.%2C%20Martin%2C%20K.%2C%20Dechev%2C%20D.%3A%2
0Preliminary%20results%20for%20neuroevolutionary%20optimization%20phas
e%20order%20generation%20for%20static%20compilation.%20In%3A%20Proce
edings%20of%20the%2011th%20Workshop%20on%20Optimizations%20for%20
DSP%20and%20Embedded%20Systems%2C%20pp.%2033%E2%80%9340%20
%282014%29)

Alkaaby, Z.S., Alwan, E.H., Fanfakh, A.B.M.: Finding a good global sequence using
multi-level genetic algorithm. J. Eng. Appl. Sci. 9777–9783 (2018)
Google Scholar (https://scholar.google.com/scholar?
q=Alkaaby%2C%20Z.S.%2C%20Alwan%2C%20E.H.%2C%20Fanfakh%2C%20A.
B.M.%3A%20Finding%20a%20good%20global%20sequence%20using%20multi-
level%20genetic%20algorithm.%20J.%20Eng.%20Appl.%20Sci.%209777%E2%8
0%939783%20%282018%29)

Crainic, T.G., Toulouse, M.: Parallel strategies for meta-heuristics. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in
Operations Research & Management Science, vol. 57, pp. 475–513. Springer,
Boston (2003). https://doi.org/10.1007/0-306-48056-5_17
(https://doi.org/10.1007/0-306-48056-5_17)

Hertz, A., Widmer, M.: Guidelines for the use of meta-heuristics in combinatorial
optimization. Eur. J. Oper. Res. 151, 247–252 (2003)
MathSciNet (http://www.ams.org/mathscinet-getitem?mr=2014074)
CrossRef (https://doi.org/10.1016/S0377-2217(02)00823-8)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=Guidelines%20for%20the%20use%20of%20meta-
heuristics%20in%20combinatorial%20optimization&author=A.%20Hertz&author
=M.%20Widmer&journal=Eur.%20J.%20Oper.%20Res.&volume=151&pages=24
7-252&publication_year=2003)

https://scholar.google.com/scholar?q=Sher%2C%20G.%2C%20Martin%2C%20K.%2C%20Dechev%2C%20D.%3A%20Preliminary%20results%20for%20neuroevolutionary%20optimization%20phase%20order%20generation%20for%20static%20compilation.%20In%3A%20Proceedings%20of%20the%2011th%20Workshop%20on%20Optimizations%20for%20DSP%20and%20Embedded%20Systems%2C%20pp.%2033%E2%80%9340%20%282014%29
https://scholar.google.com/scholar?q=Alkaaby%2C%20Z.S.%2C%20Alwan%2C%20E.H.%2C%20Fanfakh%2C%20A.B.M.%3A%20Finding%20a%20good%20global%20sequence%20using%20multi-level%20genetic%20algorithm.%20J.%20Eng.%20Appl.%20Sci.%209777%E2%80%939783%20%282018%29
https://doi.org/10.1007/0-306-48056-5_17
http://www.ams.org/mathscinet-getitem?mr=2014074
https://doi.org/10.1016/S0377-2217(02)00823-8
http://scholar.google.com/scholar_lookup?title=Guidelines%20for%20the%20use%20of%20meta-heuristics%20in%20combinatorial%20optimization&author=A.%20Hertz&author=M.%20Widmer&journal=Eur.%20J.%20Oper.%20Res.&volume=151&pages=247-252&publication_year=2003

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 14/16

5.

6.

7.

8.

9.

Almohammed, M.H., Alwan, E.H., Fanfakh, A.B.M.: Programs features clustering
to find optimization sequence using genetic algorithm. In: Jain, L.C., Peng, S.-L.,
Alhadidi, B., Pal, S. (eds.) ICICCT 2019. LAIS, vol. 9, pp. 40–50. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-38501-9_4
(https://doi.org/10.1007/978-3-030-38501-9_4)

CrossRef (https://doi.org/10.1007/978-3-030-38501-9_4)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=Programs%20features%20clustering%20to%20find%20optimization%20seq
uence%20using%20genetic%20algorithm&author=MH.%20Almohammed&autho
r=EH.%20Alwan&author=ABM.%20Fanfakh&pages=40-
50&publication_year=2020)

Nisbet, A.P.: GAPS: Iterative feedback directed parallelization using genetic
algorithms. In: Workshop on Profile and Feedback-Directed Compilation (1998)
Google Scholar (https://scholar.google.com/scholar?
q=Nisbet%2C%20A.P.%3A%20GAPS%3A%20Iterative%20feedback%20directed
%20parallelization%20using%20genetic%20algorithms.%20In%3A%20Worksho
p%20on%20Profile%20and%20Feedback-
Directed%20Compilation%20%281998%29)

Kumar, T.S., Sakthivel, S., Kumar, S.: Optimizing code by selecting compiler flags
using parallel genetic algorithm on multicore CPUs. Int. J. Eng. Technol. (IJET) 6,
544–555 (2014)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=Optimizing%20code%20by%20selecting%20compiler%20flags%20using%2
0parallel%20genetic%20algorithm%20on%20multicore%20CPUs&author=TS.%2
0Kumar&author=S.%20Sakthivel&author=S.%20Kumar&journal=Int.%20J.%20
Eng.%20Technol.%20%28IJET%29&volume=6&pages=544-
555&publication_year=2014)

Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In: Proceedings of the International
Symposium on Code Generation and Optimization, pp. 319–332. IEEE Computer
Society (2006)
Google Scholar (https://scholar.google.com/scholar?
q=Pan%2C%20Z.%2C%20Eigenmann%2C%20R.%3A%20Fast%20and%20effecti
ve%20orchestration%20of%20compiler%20optimizations%20for%20automatic%
20performance%20tuning.%20In%3A%20Proceedings%20of%20the%20Internat
ional%20Symposium%20on%20Code%20Generation%20and%20Optimization%
2C%20pp.%20319%E2%80%93332.%20IEEE%20Computer%20Society%20%28
2006%29)

Kulkarni, P.A., Whalley, D.B., Tyson, G.S., Davidson, J.W.: Exhaustive
optimization phase order space exploration. In: Proceedings of the International
Symposium on Code Generation and Optimization (2006)
Google Scholar (https://scholar.google.com/scholar?
q=Kulkarni%2C%20P.A.%2C%20Whalley%2C%20D.B.%2C%20Tyson%2C%20G.
S.%2C%20Davidson%2C%20J.W.%3A%20Exhaustive%20optimization%20phase
%20order%20space%20exploration.%20In%3A%20Proceedings%20of%20the%2
0International%20Symposium%20on%20Code%20Generation%20and%20Opti
mization%20%282006%29)

https://doi.org/10.1007/978-3-030-38501-9_4
https://doi.org/10.1007/978-3-030-38501-9_4
http://scholar.google.com/scholar_lookup?title=Programs%20features%20clustering%20to%20find%20optimization%20sequence%20using%20genetic%20algorithm&author=MH.%20Almohammed&author=EH.%20Alwan&author=ABM.%20Fanfakh&pages=40-50&publication_year=2020
https://scholar.google.com/scholar?q=Nisbet%2C%20A.P.%3A%20GAPS%3A%20Iterative%20feedback%20directed%20parallelization%20using%20genetic%20algorithms.%20In%3A%20Workshop%20on%20Profile%20and%20Feedback-Directed%20Compilation%20%281998%29
http://scholar.google.com/scholar_lookup?title=Optimizing%20code%20by%20selecting%20compiler%20flags%20using%20parallel%20genetic%20algorithm%20on%20multicore%20CPUs&author=TS.%20Kumar&author=S.%20Sakthivel&author=S.%20Kumar&journal=Int.%20J.%20Eng.%20Technol.%20%28IJET%29&volume=6&pages=544-555&publication_year=2014
https://scholar.google.com/scholar?q=Pan%2C%20Z.%2C%20Eigenmann%2C%20R.%3A%20Fast%20and%20effective%20orchestration%20of%20compiler%20optimizations%20for%20automatic%20performance%20tuning.%20In%3A%20Proceedings%20of%20the%20International%20Symposium%20on%20Code%20Generation%20and%20Optimization%2C%20pp.%20319%E2%80%93332.%20IEEE%20Computer%20Society%20%282006%29
https://scholar.google.com/scholar?q=Kulkarni%2C%20P.A.%2C%20Whalley%2C%20D.B.%2C%20Tyson%2C%20G.S.%2C%20Davidson%2C%20J.W.%3A%20Exhaustive%20optimization%20phase%20order%20space%20exploration.%20In%3A%20Proceedings%20of%20the%20International%20Symposium%20on%20Code%20Generation%20and%20Optimization%20%282006%29

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 15/16

10.

11.

12.

13.

14.

15.

Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for reduced code space
using genetic algorithms. In: ACM SIGPLAN Notices, pp. 1–9 (1999)
Google Scholar (https://scholar.google.com/scholar?
q=Cooper%2C%20K.D.%2C%20Schielke%2C%20P.J.%2C%20Subramanian%2C
%20D.%3A%20Optimizing%20for%20reduced%20code%20space%20using%20g
enetic%20algorithms.%20In%3A%20ACM%20SIGPLAN%20Notices%2C%20pp.
%201%E2%80%939%20%281999%29)

Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler
optimization-space exploration. In: Proceedings of the International Symposium
on Code Generation and Optimization. Feedback-Directed and Runtime
Optimization, 204–215, March 2003
Google Scholar (https://scholar.google.com/scholar?
q=Triantafyllis%2C%20S.%2C%20Vachharajani%2C%20M.%2C%20Vachharajan
i%2C%20N.%2C%20August%2C%20D.I.%3A%20Compiler%20optimization-
space%20exploration.%20In%3A%20Proceedings%20of%20the%20International
%20Symposium%20on%20Code%20Generation%20and%20Optimization.%20Fe
edback-
Directed%20and%20Runtime%20Optimization%2C%20204%E2%80%93215%2
C%20March%202003)

Kulkarni, P.A., Hines, S.R., Whalley, D.B., Hiser, J.D., Davidson, J.W., Jones,
D.L.: Fast and efficient searches for effective optimization-phase sequences. ACM
Trans. Archit. Code Optim. 2, 165–198 (2005)
CrossRef (https://doi.org/10.1145/1071604.1071607)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=Fast%20and%20efficient%20searches%20for%20effective%20optimization-
phase%20sequences&author=PA.%20Kulkarni&author=SR.%20Hines&author=D
B.%20Whalley&author=JD.%20Hiser&author=JW.%20Davidson&author=DL.%2
0Jones&journal=ACM%20Trans.%20Archit.%20Code%20Optim.&volume=2&pa
ges=165-198&publication_year=2005)

Guiffaut, C., Mahdjoubi, K.: A parallel FDTD algorithm using the MPI library.
IEEE Antennas Propag. Mag. 43, 94–103 (2001)
CrossRef (https://doi.org/10.1109/74.924608)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=A%20parallel%20FDTD%20algorithm%20using%20the%20MPI%20library
&author=C.%20Guiffaut&author=K.%20Mahdjoubi&journal=IEEE%20Antennas
%20Propag.%20Mag.&volume=43&pages=94-103&publication_year=2001)

Idrees, S.K., Fanfakh, A.B.M.: Performance and energy consumption prediction of
randomly selected nodes in heterogeneous cluster. In: Al-mamory, S.O., Alwan,
J.K., Hussein, A.D. (eds.) NTICT 2018. CCIS, vol. 938, pp. 21–34. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01653-1_2
(https://doi.org/10.1007/978-3-030-01653-1_2)

CrossRef (https://doi.org/10.1007/978-3-030-01653-1_2)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=Performance%20and%20energy%20consumption%20prediction%20of%20r
andomly%20selected%20nodes%20in%20heterogeneous%20cluster&author=SK.
%20Idrees&author=ABM.%20Fanfakh&pages=21-34&publication_year=2018)

Ashouri, A.H., Bignoli, A., Palermo, G., Silvano, C., Kulkarni, S., Cavazos, J.:
MiCOMP: mitigating the compiler phase-ordering problem using optimization

https://scholar.google.com/scholar?q=Cooper%2C%20K.D.%2C%20Schielke%2C%20P.J.%2C%20Subramanian%2C%20D.%3A%20Optimizing%20for%20reduced%20code%20space%20using%20genetic%20algorithms.%20In%3A%20ACM%20SIGPLAN%20Notices%2C%20pp.%201%E2%80%939%20%281999%29
https://scholar.google.com/scholar?q=Triantafyllis%2C%20S.%2C%20Vachharajani%2C%20M.%2C%20Vachharajani%2C%20N.%2C%20August%2C%20D.I.%3A%20Compiler%20optimization-space%20exploration.%20In%3A%20Proceedings%20of%20the%20International%20Symposium%20on%20Code%20Generation%20and%20Optimization.%20Feedback-Directed%20and%20Runtime%20Optimization%2C%20204%E2%80%93215%2C%20March%202003
https://doi.org/10.1145/1071604.1071607
http://scholar.google.com/scholar_lookup?title=Fast%20and%20efficient%20searches%20for%20effective%20optimization-phase%20sequences&author=PA.%20Kulkarni&author=SR.%20Hines&author=DB.%20Whalley&author=JD.%20Hiser&author=JW.%20Davidson&author=DL.%20Jones&journal=ACM%20Trans.%20Archit.%20Code%20Optim.&volume=2&pages=165-198&publication_year=2005
https://doi.org/10.1109/74.924608
http://scholar.google.com/scholar_lookup?title=A%20parallel%20FDTD%20algorithm%20using%20the%20MPI%20library&author=C.%20Guiffaut&author=K.%20Mahdjoubi&journal=IEEE%20Antennas%20Propag.%20Mag.&volume=43&pages=94-103&publication_year=2001
https://doi.org/10.1007/978-3-030-01653-1_2
https://doi.org/10.1007/978-3-030-01653-1_2
http://scholar.google.com/scholar_lookup?title=Performance%20and%20energy%20consumption%20prediction%20of%20randomly%20selected%20nodes%20in%20heterogeneous%20cluster&author=SK.%20Idrees&author=ABM.%20Fanfakh&pages=21-34&publication_year=2018

10/28/2020 Parallel Genetic Algorithm for Optimizing Compiler Sequences Ordering | SpringerLink

https://link.springer.com/chapter/10.1007/978-3-030-55340-1_9 16/16

© 2020 Springer Nature Switzerland AG. Part of Springer Nature.

sub-sequences and machine learning. ACM Trans. Archit. Code Optim. (TACO)
14(3), 29 (2017)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=MiCOMP%3A%20mitigating%20the%20compiler%20phase-
ordering%20problem%20using%20optimization%20sub-
sequences%20and%20machine%20learning&author=AH.%20Ashouri&author=A.
%20Bignoli&author=G.%20Palermo&author=C.%20Silvano&author=S.%20Kulka
rni&author=J.%20Cavazos&journal=ACM%20Trans.%20Archit.%20Code%20Op
tim.%20%28TACO%29&volume=14&issue=3&pages=29&publication_year=2017
)

Copyright information

© Springer Nature Switzerland AG 2020

About this paper

Cite this paper as:
Almohammed M.H., Fanfakh A.B.M., Alwan E.H. (2020) Parallel Genetic Algorithm for Optimizing Compiler
Sequences Ordering. In: Al-Bakry A. et al. (eds) New Trends in Information and Communications Technology
Applications. NTICT 2020. Communications in Computer and Information Science, vol 1183. Springer, Cham.
https://doi.org/10.1007/978-3-030-55340-1_9

First Online 13 August 2020
DOI https://doi.org/10.1007/978-3-030-55340-1_9
Publisher Name Springer, Cham
Print ISBN 978-3-030-55339-5
Online ISBN 978-3-030-55340-1
eBook Packages Computer Science Computer Science (R0)

Buy this book on publisher's site
Reprints and Permissions

Personalised recommendations

https://www.springernature.com/
https://www.springernature.com/
http://scholar.google.com/scholar_lookup?title=MiCOMP%3A%20mitigating%20the%20compiler%20phase-ordering%20problem%20using%20optimization%20sub-sequences%20and%20machine%20learning&author=AH.%20Ashouri&author=A.%20Bignoli&author=G.%20Palermo&author=C.%20Silvano&author=S.%20Kulkarni&author=J.%20Cavazos&journal=ACM%20Trans.%20Archit.%20Code%20Optim.%20%28TACO%29&volume=14&issue=3&pages=29&publication_year=2017
https://link.springer.com/search?facet-content-type=%22Book%22&package=11645&facet-start-year=2020&facet-end-year=2020
https://link.springer.com/search?facet-content-type=%22Book%22&package=43710&facet-start-year=2020&facet-end-year=2020
https://www.springer.com/978-3-030-55339-5?utm_source=springerlink&utm_medium=referral&utm_campaign=bookpage_about_buyonpublisherssite
https://s100.copyright.com/AppDispatchServlet?publisherName=SpringerNature&orderBeanReset=true&orderSource=SpringerLink©right=Springer+Nature+Switzerland+AG&author=Manal+H.+Almohammed%2C+Ahmed+B.+M.+Fanfakh%2C+Esraa+H.+Alwan&contentID=10.1007%2F978-3-030-55340-1_9&endPage=138&publicationDate=2020&startPage=128&title=Parallel+Genetic+Algorithm+for+Optimizing+Compiler+Sequences+Ordering&imprint=Springer+Nature+Switzerland+AG&publication=eBook

