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Abstract 

 

The rapidly increasing number of cores available in multicore processors does not 

necessarily lead directly to a commensurate increase in performance: programs written in 

conventional languages, such as C, need careful restructuring, preferably automatically, 

before the benefits can be observed in improved run-times. Even then, much depends 

upon the intrinsic capacity of the original program for concurrent execution. The subject 

of this paper is the performance gains from the combined effect of the complementary 

techniques of the Decoupled Software Pipeline (DSWP) and (backward) slicing. DSWP 

extracts thread level parallelism from the body of a loop by breaking it into stages which 

are then executed pipeline style: in effect cutting gacross the control chain. Slicing, on the 

other hand, cuts the program along the control chain, teasing out finer threads that depend 

on different variables (or locations). parts that depend  on different variables. The main 

contribution of this paper is to demonstrate that the application of DSWP, followed by 

slicing offers notable improvements over DSWP alone, especially when there is a loop-

carried dependence that prevents the application of the simpler DOALL optimization. 

Experimental results show an improvement of a factor of _1.6 for DSWP + slicing over 

DSWP alone and a factor of _2.4 for DSWP + slicing over the original sequential code. 

Keywords—decoupled software pipeline, slicing, multicore, thread-level parallelism, 

automatic restructuring 

 

I. INTRODUCTION 

Multicore systems have become a dominant feature in computer architecture. 

Chips with 4, 8, and 16 cores are available now and higher core counts are promised. 

Unfortunately increasing the number of cores does not offer a direct path to better 

performance especially for single-threaded legacy applications. But using software 

techniques to parallelize the sequential application can raise the level of gain from 

multicore systems [2]. 

Parallel programming is not an easy job for the user, who has to deal with many issues 

such as dependencies, synchronization, load balancing, and race conditions. For this 
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reason the role of automatically parallelizing compilers and techniques for the extraction 

of several threads from single-threaded programs, without programmer intervention, is 

becoming more important and may help to deliver better utilization of modern hardware 

[7]. Two traditional transformations, whose application typically delivers substantial 

gains on scientific and numerical codes, are DOALL and DOACROSS. DOALL assigns 

each iteration of the loop to a thread (see figure 1), which then may all execute in 

parallel, because there are no cross-dependencies between the iterations. Clearly, 

DOALL performance scales linearly with the number of available threads. The 

DOACROSS  ( see figure 2) technique is very similar to DOALL, in that each iteration is 

assigned to a thread, however, there are cross-iteration data and control dependencies. 

Thus, to ensure the correct results, data dependencies have to be respected, typically 

through synchronization, so that a later iteration receives the correct value from an earlier 

one as illustrated in figure 1[2], [14]. DOALL and DOACROSS techniques depend on 

identifying loops that have a regular pattern[13], but many applications have irregular 

control flow and complex memory access patterns, making their parallelization very 

challenging. The Decoupled Software Pipeline (DSWP) has been shown to be an 

effective technique for the parallelization of applications with such characteristics. This 

transformation partitions the loop body into a set of stages, ensuring that critical path 

dependencies are kept local to a stage as shown in figure 3. Each stage becomes a thread 

and data is passed between threads using inter-core communication [5]. The success of 

DSWP depends on being able to extract the relatively fine grain parallelism that is 

present in many applications. Another technique which offers potential gains in 

parallelizing general purpose applications is slicing. Program slicing transforms large 

programs into several smaller ones that  

 

 

 
 

 

 

 

 

 

 

 

                                                   Fig. 1. DOALL Technique adopted from[2] 



 

 

 

 

 

 

 

   

 

 

 

                 Fig. 2. DOACROSS Technique          Fig. 3. DSWP Technique adopted from[2] 

execcute independently, each consisting of only statements relevant to the computation of 

certain, so-called, (program) points. The slicing technique is appropriate for parallel 

execution on a multi-core processor because it has the ability to decompose the 

application into independent slices that are executable in parallel [15]. 

This work explores the possibility of performance benefits arising from a secondary 

transformation of DSWP stages by slicing. Our observation is that individual DSWP 

stages can be parallelized by slicing, leading to an improvement in performance of the 

longest duration DSWP stages. In particular, this approach can be applicable in cases 

where DOALL is not. The proposed method is implemented using the Low level virtual 

machine (LLVM) compiler framework [6]. LLVM uses a combination of a low level 

virtual instruction set combined with high level type information. An important part of 

the LLVM design is its intermediate representation (IR). This has been carefully designed 

to allow for many traditional analyses and optimizations to be applied to LLVM code and 

many of which are provided as part of the LLVM framework. 

The remainder of the paper is organized as follows: the next section (II) describes how 

DSWP may be combined with backward slicing, then section III gives details of the 

implementation. Section IV presents some experimental results from the application of 



the automatic DSWP + Slicing transformation. Finally in section V, we survey related 

work and conclude (section VI) with some ideas for future work.  

 

                           X: Work(cur) 

                            { 

                               S1: Slice1(cur); 

                               S2: Slice2(cur); 

                             } 

                        List *cur = head; 

                        L: for (; cur != NULL; 

                        cur = cur->next) 

                        X: Work(cur); 

 

                      Fig. 4. Sliced loop body with recurrence dependency 

 

      1       ...                                   1    Calc(int M 

      2      double ss=0;                                  2                double da_in 

      3      int i;                                   3               double* da_out) { 

      4     double a[0]=0;                                  4     int j; 

      5     while( node != Null) {                                 5     b[0]=0; 

      6     Calc(node->data,a[i], &a[i+1);                    6     for(j=0;j<M;j++) { 

      7     i++;                                      7           m+=da_in+seq(j); 

      8     node=node->next;           8            (*da_out) += da_in+cos(m); 

      9      }                                                9      b[j]=b[j]+xx(m);      

     10                                                10      } 
 

                                                                Fig 5. Source program 

 

II. DSWP + SLICING TRANSFORMATION 

The performance of a DSWP-transformed program is limited by the slowest stage. 

Thus, any gains must come from  improving the performance of that stage. The main 

feature of the proposed method is the application of backward slicing to the longest stage 

emerging from the DSWP transformation. This is particularly effective when that stage 

includes a function call. 

To illustrate the method, consider the example in Figure 4. DSWP partitions the 

loop body into the parts labelled L and X, then we slice X to extract S1 and S2. 

Consequently, instead of giving the whole of stage X to one thread, it can be distributed 

across n threads, depending on the number of slices extracted, with in this case, one core 



running L (the first stage) and two more running S1 and S2 (the slices from the second 

stage). However, while there are potential gains from splitting the loop body into several 

concurrent threads, there is still the cost of synchronization and communication between 

threads to take into account. To minimize these overheads we use lock-free buffers [4]. 

As a result, producer and consumer can access the queue concurrently, via the enqueue 

and dequeue operations. This makes it possible for the producer and consumer to operate 

independently as long as there is at least one data element in the queue. 

 

III. IMPLEMENTATION OF DSWP + SLICING 

We build on earlier work by Zhao and Hahnenberg [3] who implement DSWP in LLVM. 

We have extended that code with backward slicing and a decision procedure to determine 

when it is worth applying the transformation. 

 

  

 

 

 

 

 

 

     Fig. 6. Program Dependency Graph                                                            Fig. 7. DAG of SCCs 



1         Slice_1(M,da_in){                                    1        Slice_2(M,da_in,da_out){ 

2           int j;                                                        2         int j; 

3          for(j=0;j<M;j++) {                                 3         b[0]=0; 

4                 m+=da_in+seq(j);                           4         for(j=0;j<M;j++) { 

5                  (*da_out) += da_in+cos(m);          5          m+=da_in+seq(j); 

6             }                                           6           b[j]=b[j]+xx(m); 

7        }                                 7         } 

                                  8      } 

        Fig. 8. Slice 1 on da_out                                Fig. 9. Slice 2 on b[j] 

 

The transformation procedure is based on the algorithm for DSWP proposed by Ottoni et 

al. [8]. It takes as input L, the loop to be optimized,  and modifies it as a side-effect. The 

details are as follows: 

1) Find candidate loop: This step looks for the most profitable loop to apply DSWP + 

Slicing. We collect static information about the program and then use a heuristic to 

estimate the number of cycles necessary to execute all instructions in every loop in the 

program. The loop with the largest estimated cycle count and containing a function call is 

chosen. This is a first approximation selection procedure and clearly a more sophisticated 

version can and should be substituted in due course.  

2) Build the Program Dependency Graph (PDG): The subject is the loop to be 

parallelized. Figure 6 shows that the solid lines (red) denote data dependency and dashed 

lines (black) control dependency.  

3) Build strongly connected component (SCC) DAG: In order to keep all the 

instructions that contribute to a dependency local to a thread, a Strongly Connected 

Component(SCC) is built, followed by the DAG for the SCCs. Consider the code in 

figure 5. The loop (lines 5– 9) traverses a linked list and calls the procedure Calc. Figure 

7 shows the DAGscc of the PDG of the program on the left had side of figure 5. In the 

procedure Calc, there are loop-carried dependencies that make DOALL inapplicable. 

DOACROSS is only applicable with the addition of synchronization that may cost more 



than is gained. However, if we can extract independent short slices from this stage and 

execute them in parallel, the execution time for this long stage can be reduced. In this 

case, after DSWP partitioning, we extract two slices (Figures 8 and 9) where function seq 

is side-effect-free.  

4) Assign SCCs to threads: The previous step may result in more SCCs than available 

threads. In this case, we merge SCCs until there are as many as there are threads. In our 

example, we have a function call in the loop body. We assign the SCCs that represent the 

outer loop body to the  first thread and the n extracted slices to n threads. 

Input: A PDG, set of empty list associated, one for each node identifier(variable in the slicing list). 

Output: Slice for each node identifier(variable). 

Algorithm: 

     - Make all PDG nodes as not visited 

     - ComputeASlice(exit node) 

 

ComputeASlice ( node n){ 

            If node is not visited 

            Mark node n as visited 

            Add the instructions of n to the set associated with node n 

             For each node m( instruction)in which node n depends ComputeASlice(m) 

                      Add the content of the set  associated with node m to the set  associated with node n 

                } 

                                 Fig. 10. The ComputeAllSlice algorithm. Adopted from [1]                       

 

5) Extract slice: In this part, a small slicing program is designed that has the ability to 

extract slices for the limited range of the case studies. The algorithm illustrated in figure 

10 is used to compute an intra-procedural static slice [1]. N static slices from the function 

body are extracted as follows: In the first step, the PDG is built for the function body by 

drawing up the dependency table that has both control and data dependency (similar to 



the one above used to determine thread assignment). Secondly, the entry block for the 

function body is examined so as to identify the variables to be sliced and then the names 

of these are collected, being put on a slicing list. The ComputeASlice is called to extract a 

slice for every listed variable. Then, an attempt is made to isolate the control statement 

parts, such as loop or if statement, into another table called the control table. After 

collecting the control part instructions, these are added to the extracted slice, if one of the 

slice instructions is contained in this control parts. For each filtered variable in the slicing 

identifiers list, first, an empty list is associated with it and subsequently, all the PDG table 

entries are scanned to find which one matches the slicing identifier. If one is found, then 

all the instructions that have data or control dependency are added to the associated list. 

This procedure is repeated to all the instructions in the associated list and their operands 

and is not stopped until all the instructions and their operands are contained in this list or 

all the variables that represent the loop induction variables have been reached. 

After a set of slices has been extracted from the function body, they are filtered to remove 

redundant ones so as to avoid repeated calculation, which will happen if all the 

instructions in one of them have been included in another. For example ,if there are two 

slices and slice 1 is completely contained in slice 2 and the second slice (slice 2) is longer 

than the first, then we will remove the former and keep the latter. This procedure is 

repeated for all n slices, the real number is obtained. In the case of figure 5 two slice will 

be retracted for two variables da_out and sum. 

6) Insert synchronization: To ensure correct results, the dependence between threads 

must be respected and for pipeline parallelism to be effective, the overhead on core-to-

core communication must be as low as possible. Hence, we use the FastForward circular 

lock-free queue algorithm [4]. In order to determine the source and the destination of 

dependencies between the DSWP stages, we need to inspect function arguments. These 

arguments denote the data that will go in the communication buffers. The destination of a 

dependency appears in the body of a function and hence where the data must be retrieved 

in order for the sliced stages to work correctly. 

 

IV. EXPERIMENTAL RESULTS 

 This section discusses the results obtained from the application of the 

automatic implementation of the proposed method that we presented in section II. Several 



programs have been used as case studies. Some are artificial and others are taken from 

[9]. The discussion examines two issues: (i) the effect of lock-free buffers on the 

performance of DSWP, and (ii) the results from the application of DSWP + slicing, 

demonstrating how this method can improve the performance of long stage DSWP with 

different program patterns. 

A. Communication Overhead 

 This section examines the impact of communication costs on the 

performance of DSWP. It is important for us to be able to quantify this cost because it is 

a critical factor in the decision procedure for whether to carry out the DSWP + slicing 

transformation. We are also aware this cost will be platform dependent, which is why we 

provide details of our particular platform. In a production deployment, this aspect would 

have to be measured as part of a calibration process. Consider the program in figure 11. 

We wish to execute this it by applying DSWP to the loop that takes the most execution 

time of the program. Initially, we partition the program into two parts, give each to a 

thread and execute the threads as a pipeline. The first thread handles lines 5–14 and the 

second, lines 15–24. Two parameters play a vital role in determining the benefit (or 

otherwise) of DSWP, namely M and N. M affects the amount of work inside each thread 

by controlling the number of iterations in the inner loops, while N, in effect, determines 

the volume of data transfer between threads, by controlling the number of outer loop 

iterations. Figure 12 shows how changing the value of N (1–40) and M (1000–1000000) 

affects the execution time of the DSWP version compared to the sequential program. 

From N=6 and M=51000 the performance of DSWP becomes better than the sequential 

one. Furthermore the effect of the buffer size on the performance of DSWP is examined, 

for which the same program as in figure 11 was employed. However this time the value 

of N was fixed to 1,000 and M to 10,000 and the only parameter that was 

1       main() 

2       int N,M 

3        ..... 

4       rows=N; 

5       for(i1=1; i1 < rows; i1++) { 

6            for(z=1;z<M;z++) { 

7                 sum = 0; 

8                 for(a=1; a<10; a++) 

9                        sum = sum + image[i1] *mask_1[a];       

10                      if(sum > max) sum = max; 

11                      if(sum < 0) sum =10; 



12                     if(sum < out_image[i1]) 

13                      out_image[i1] = sum; 

14                     } 

15              for(z1=1;z1<M;z1++) { 

16                    sum1 = 0; 

17               for(a1=1; a1<10; a1++) { 

18                     sum1 = sum1 + image[i1] * mask_2[a1];  

19                     if(sum1 > max) sum1 = max; 

20                     if(sum1 < 0) sum1 = 10; 

21                     if(sum1 > out_image[i1]) 

22                     out_image[i1] = sum1; 

23                    } 

24               } 
Fig. 11. Sequential version of program to evaluate DSWP overheads 

 

 

 

 

 

 

 

 

 

Fig. 12. Effect of N and M on DSWP 

changed was the buffer size. That is, was varied between 10 and 1000, with the execution 

time of the program being only slightly changed during the during the execution(2 to 5 

ms) which was because it was assumed that this was the amount of time needed to create 

the link list. As a result, it can be concluded that the effect of buffer size on DSWP is 

trivial. 

B. Combining DSWP and slicing  

 We now examine the effect of combining DSWP and slicing by applying 

slicing to the long stage coming out of the DSWP transformation. The sample programs 

that we study here all exhibit an imbalance between the two stages of the DSWP, i.e the 



number of instructions in the outer loop is less than the number of instructions in the 

function body. The addition of slicing permits some degree of equilibration. Two of the 

sample programs are artificial (linkedlist2.c and linkedlist3.c), while the remaining three 

(fft.c , pro 2.4.c and test0697.c) are genuine. For each of the case studies, we extract two 

slices from the function body, so that the maximum number of threads in general were 

four depending on whether the extracted slice returns value to the original loop or not.  

TABLE I. PLATFORM DETAILS 

 

 

 

 

 

 

 

The data transferred between DSWP stages corresponds to the arguments of a function, 

which in our case studies are between one and four arguments. LLVM-gcc (the LLVM C 

front end, derived from gcc) and the LLVM compiler framework have been used to 

automate our method. In addition, manually transformed programs have been compiled 

using gcc in order to be able to compare manual and automatic results. Table I 

summarises the technical details of the evaluation platform. Our automatic method uses 

two passes: 1) The first pass carries out static analysis of all the loops in a program. For 

each loop it adds up the static execution time for each instruction in the loop body and 

also accumulates the execution time for the function bodies and stores these results in a 

table. 2) The second pass chooses a loop to transform and construct the software pipeline. 

This uses the data collected in the previous pass to identify the highest cost loop, that also 

contain a function call. Next we look at the sample programs in more detail and at the 

results of the transformation process.  

fft.c An implementation of the fast Fourier transform [9].The test program is a 

generalization of the program to make it work with N functions. We give the outer loop 

to the first thread and the fft function to the second thread. From the graph in Figure 16, it 

is clear how the unbalanced long stage DSWP can affect DSWP performance, where it 

Intel(R) Core(TM) i7 CPU Processor 

2.93 GHz Processor speed 

1 CPU, 4 Core, 2 threads per Core Processor 

Configuration 

32 k L1d Cache size 

32 k L1i Cache size 

256 k L2 Cache size 

8192 k L3 Cache size 

4.GB RAM 

SUSE Operating System 

GCC and LLVM Compiler 



only improves slightly on the sequential program. We extract two slices from the loop 

body: the first is the computation of the real part and the second the imaginary part. 

Figure 15 again shows loop speed up for DSWP + Slicing in both manual and automatic 

forms.  

Pro-2.4.c This program [9] computes the derivative of N functions. F1 is the first 

derivative, F2 the second, D1 is the error in F1, and D2 the error in F2. Similar to the 

previous program we extract two slices from function body after giving the it to the 

second stage DSWP. As with the previous program we add some adaptations to the 

program and we generalize it to make it work for N functions. We set NMAX = 100000 

and vary M from M=5 to M=30. Figure 22 shows the execution time for sequential, 

DSWP, DSWP + slicing (manual) and DSWP + slicing (automatic). Figure 21 shows 

loop speed up for Pro-2.4 using DSWP + Slicing.  

test0697.c This program computes the spherical harmonics function, which is used in 

many physical problems ranging from the computation of atomic electron configuration 

to the representation of the gravitational and magnetic fields  

 

 

 

 

 

 

 

 

 

Fig. 13. Loop speed up with three threads for test0697.c program 

 

 

 



 

 

 
 

 

 

                                                      Fig. 14. Execution times for program test0697.c 

 

 

 

 

 

 

 

                                              Fig. 15. Loop speed up with three threads for fft.c program 

 
 

 

 

 

 

Fig. 16. Execution times for program fft.c 

 

of planetary bodies. It has two function calls inside the loop body. The first, called the 

spherical-harmonic-value, gives the initial value to the second function argument, with 

this function being called the spherical-harmonic. The loop was divided into two parts, 

depending on the instruction latency execution time. The second function call, which 

represents the spherical-harmonic was allocated to the second thread, whilst the rest of 

the loop body containing the first function call was assigned to the first thread. 

Iter. Llvm-
seq 

Llvm-dswp-slice Gcc-
seq 

Gcc-dswp-
slice 

Gcc-swp 

  (Auto.)  (Man.)  

2 0.135 0.119 0.370 0.272 0.304 

5 0.215 0.173 0.628 0.420 0.483 

7 0.287 0.179 0.875 0.602 0.667 

9 0.360 0.260 1.140 0.775 0.866 

11 0.410 0.263 1.387 0.954 1.046 

13 0.523 366 1.651 1.115 1.242 

Iter. Llvm-
seq 

Llvm-
dswp-slice 

Gcc-seq Gcc-dswp-
slice 

Gcc-dswp 

  (Auto.)  (Man.)  

5 0.702 0.406 0.700 0.310 0.558 

10 1.375 0.780 1.391 0.690 1.244 

15 2.058 1.155 2.078 1.069 1.934 

20 2.750 1.532 2.770 1.453 2.625 

30 4.106 2.272 4.130 2.214 3.972 

40 5.474 3.013 5.530 2.954 5.390 



Subsequently, two slices, c[] and s[], were extracted from the second function call by 

applying slicing technique on this part alone. With high values (40000) of L and M the 

execution time of this combination was better than for the sequential program. The 

number of threads was three with two communication buffers and the number of 

transferred function arguments was four. The results obtained by automatic and manual 

implementation for the sequential and DSWP Slicing versions, show that the former 

method gives ≈ 1.4 speed up compared with the sequential program in the LLVM 

environment (see columns 2 and 3 in the table in 14). Moreover, columns 4 and 5 under 

the GCC environment shows that the speed up becomes ≈ 1.5 after applying the slicing 

technique, while that for DSWP alone is only ≈ 1.3. 

 linkedlist{2,3}.c The fourth program is another artificial program in two variants. The 

common feature is the traversal of a linked list of linked lists (in contrast to the use of 

arrays as in the other examples). The key difference between the variants is that the 

function called from the loop body does not return a value in the first (linkedlist2.c), and 

does in the second (linkedlist3.c). This allows us to demonstrate the cost of adding a 

buffer to the program. Two parameters affect the workload, namely the length of the first 

level list and the length of the second level list. In these test the length of the second level 

list is fixed at 1000 elements, while the length of the first ranges between 10 and 70, 

giving rise to the results shown in Figure 18 and the execution times show in Figure 17. 

The results for the second version of the program appear in Figure 20. By comparing 

Figures 18 and 20, we can see how adding an additional buffer to communicate the return 

value from the one of these slices affects the execution time. This cost appears to have a 

marginally higher impact on the program using DSWP alone, making it slower than the 

original sequential program. 

 
 

 

 

 

 

 

                                  Fig. 17. Loop speed up with three threads for linkedlist2.c program 



 
 

 

 

 

Fig. 18. Execution times for linkedlist2.c program 

 

 

 

 

 

 

 

 

 

 

                                         Fig. 19. Loop speed up with three threads for linkedlist3.c program 

 

 
 

 

 

 

 

Fig. 20. Execution times for linkedlist3.c program 

 

Iter. Llvm-seq Llvm-
dswp-slice 

Gcc-seq Gcc-dswp-
slice 

Gcc-dswp 

  (Auto.)  (Man.)  

5 0.191 0.120 0.170 0.95 0.167 

10 0.359 0.215 0.335 0.190 0.332 

20 0.707 0.380 0.680 0.369 0.664 

30 1.035 0.553 1.010 0.556 0.998 

40 1.372 0.733 1.330 0.730 1.320 

50 1.707 0.915 1.684 0.910 1.660 

Iter. Llvm-seq Llvm-
dswp-slice 

Gcc-
seq 

Gcc-dswp-
slice 

Gcc-dswp 

  (Auto.)  (Man.)  

5 0.160 0.122 0.170 0.95 0.167 

10 0.344 0.214 0.335 0.190 0.332 

20 0.694 0.387 0.680 0.369 0.664 

30 1.058 0.557 1.010 0.556 0.998 

50 1.726 0.927 1.330 0.730 1.320 

70 2.440 1.286 1.684 0.910 1.660 



 

 

 

 

 

 

 

 

 

                                             Fig. 21. Loop speed up with three threads for Pro 2.4 program 

 
 

 

 

 

Fig. 22. Execution times for Pro 2.4 program 

V. RELATED WORK 

 Weiser[17] proposes the use of slicing for the parallel execution of 

programs. He states that slicing is appropriate for parallel execution on multiprocessor 

architectures, because of the ability to decompose the program into independent slices 

that execute in parallel without synchronization, or in shared memory by duplicating the 

computation in each slice. In general, it is claimed the slices are shorter and execute 

faster than the original program. However, there can be an arbitrary difference in the 

speed of individual slice execution, leading to an interleaving problem ,which is how to 

find – at runtime – the correct ordering for slice outputs. Consequently, after the output of 

each slice is received, it needs to be reordered to maintain the original program behavior 

[16].  Wang et al. [15] introduce a dynamic framework to parallelize a single threaded 

binary program using speculative slicing. The major contribution of this work can be 

summarized as: 

Iter.  Llvm-
seq  

Llvm-
dswp-
slice  

Gcc-
seq  

Gcc-
dswp-
slice  

Gcc-
dswp  

  (Auto.)   (Man.)   

5  0.088  0.062  0.83  0.042  0.058  

10  0.153  0.100  0.153  0.077  0.103  

15  0.227  0.130  0.220  0.101  0.145  

20  0.290  0.153  0.292  0.134  0.188  

25  0.353  0.180  0.365  0.168  0.230  

30  0.419  0.217  0.450  0.210  0.275  



 Parallelization of binary code transparently for multicore systems. 

 Slicing of the ‘hot’ region of the program, rather than the whole program. In 

addition, they used a loop unrolling transformation that can help to find more 

loop-level parallelism in a backward slice even in the presence of loop-carried 

dependencies and they propose an algorithm to determine automatically the 

optimal unrolling factor. They also demonstrate how this factor can affect the 

parallelism.  

  Slicing-based parallelism for irreducible control flow graphs. They define the 

backward slice using the program dependency graph instead of a program regular 

expression. They also introduce the Allow list that uses post-dominator 

relationships to solve the ambiguity problem that was noted in the previous 

splicing solution [16],which is the problem of determining the priority of the 

instructions in each slice to get the  right output, where the slice output has to be 

reordered to maintain the original program behavior. 

 Rong et al. [12] propose a method to construct a software pipeline from an arbitrarily 

deep loop nest, whereas the traditional one is applied to the innermost loop or from the 

innermost to outer loops. This approach is called the single dimensional software pipeline 

(SSP). The (SSP) name came from the conversion of a multi-dimensional data 

dependency graph (DDG) to 1-D DDG. This approach consists of three steps. 

 Loop Selection: Every loop level is inspected and the most profitable one is 

selected to apply the software pipeline schedule. Two criteria can be used to 

determine which loop is more profitable to the software pipeline schedule are 

initiation rate and data reuse. 

 Dependency Simplification: simplify the dependency for the selected loop L from 

the multi-dimension data dependency graph (DDG ) to a single dimension which 

contains zero dependencies. 

 Final Schedule Computation: after obtaining the simplified DDG, iteration points 

in the loop nest are allocated to slices: for any i1 in [0,N1], iteration point 

(i1,0,..,0,0) is assigned to the first slice, (i1,0,..,0,1) to the second, and so on. All i1 

iterations can be executed in parallel, if there is no dependency between the 

iterations and there is unlimited resources. However, if there are dependencies, 

these iterations will be executed using software pipelines. To address resource 



limitations, the set of slices are divided into groups and relegated to succeeding 

groups until some resources are available. 

Rangan et al. [11] introduced a new technique to utilize a decoupled software pipeline for 

optimizing the performance of recursive data structures (RDS) (e.g., linked lists, trees and 

graphs). For this kind of structure (RDS), difficulties have been encountered when trying 

to execute it in parallel, because the instructions of a given iteration of a loop depend on 

the pointer value that is loaded from a previous iteration. Therefore to address this 

problem, a decoupled software pipeline has been used so as to avoid stalls that are 

happening with the long variables-latency instruction in RDS loops. RDS loops consist of 

two parts, with the first containing the traversal code (critical path of execution) and the 

second representing the computation that should be carried out on each node traversed by 

the first part. By determining which program part is responsible for the traversal of the 

recursive data structure, the backward slice for this part should be identified and then 

decoupled software pipeline techniques can be used to parallelized these parts. The first 

part will be given to one thread and the second part to another. As the data dependency 

between these parts is unidirectional (the computation chain in the first part depends on 

the traversing chain in the second, but not vice-versa) the producer instruction is inserted 

in the first part and the consumer one in the second. Raman et al. [10] introduce a parallel 

stage decoupled software pipeline (PS-DSWP). This technique is positioned between the 

decoupled software pipeline and DOALL. The reason for this combination is that the 

slowest stage of DSWP bounds the speed of DSWP – as we have noted – so this work 

exploits the ability to execute some stages of DSWP using DOALL. They use special 

hardware (synchronization array[11]) to communicate data between cores. For this 

reason, there is very low communication latency on the performance of PS-DSWP[10], 

but the special hardware is experimental and not available on stock processors. Huang et 

al. [5] show that DSWP can improve performance  if it works with other techniques. This 

usage called DSWP+, divides the loop body into stages. These stages are open to 

parallelization with another techniques like DOALL, LOCALWRITE and SpecDOALL. 

After constructing a program dependency graph (PDG) of the loop and finding strongly 

connected components (SCCs),the loop body is partitioned into stages. These stages can 

be optimized by choosing a suitable parallelizing technique for each stage. By giving a 

sufficient number of threads to the parallelization stages, DSWP+ can produce balanced 

pipelines (there is no big gap in the execution time of the work that is given to each 

stage). The results suggest that DSWP+ (a combination method) gives more speedup than 



using DSWP, DOALL, LOCALWRITE alone. It uses lock-free queue and producer and 

consumer primitives that are implemented in software to communicate data and control 

condition between threads. LOCALWRITE solves loop carried dependencies for 

irregular computation over arrays based on array index determination at runtime, 

however it does  not work in all cases. 

VI. CONCLUSION 

This paper introduces the idea of DSWP applied in conjunction with slicing, by splitting 

up loops into new loops  that are amenable to slicing techniques. An evaluation of this 

technique on five program codes with a range of dependence patterns leads to 

considerable performance gains on a core-i7 870 machine with 4-core / 8-threads. The 

results are obtained from an automatic implementation that shows the proposed method 

can give a factor of up to 2.4 speed up compared with the original sequential code.  

The contribution of this paper is a proof of the concept that DSWP and slicing can 

offer useful benefits and, moreover, that such transformation can be done automatically 

and under the control of an heuristic procedure that assesses the potential gains to be 

achieved. Consequently, there is much work to N be done in respect of improving the 

collection of data and the decision procedure, as well as the integration of the technique 

into a non-experimental compiler environment. More specifically, we aim to increase the 

potential parallelism that can be extracted from the long stage DSWP. One of major 

issues with backward slice is the longest critical path (slice) creates a limit on parallelism. 

Insights from [15] suggest we can increase parallelism (number of extracted slices) by 

combining loop unrolling with backward slice in the presence of loop carried 

dependencies. 
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