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Abstract In this paper, a trust-region procedure is proposed for the solution of non-
linear equations. The proposed approach takes advantages of an effective adaptive
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ately. It is believed that selecting an appropriate adaptive radius based on a suitable
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frameworks as well as decrease the computational cost of the algorithm by decreasing
the required number subproblems that must be solved. The global convergence and
the local Q-quadratic convergence rate of the proposed approach are proved. Prelimi-
nary numerical results of the proposed algorithm are also reported which indicate the
promising behavior of the new procedure for solving the nonlinear system.
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1 Introduction

In this paper we consider the nonlinear system of equations

F(x) = 0, x ∈ Rn, (1)

where F : Rn → Rn is a continuously differentiable mapping in the form F(x) :=
(F1(x), F2(x), . . . , Fn(x))T . Suppose that F(x) has a zero. Then, it is well known that
every solution x∗ of the given problem (1) is also a solution of the following nonlinear
least-squares problem

min f (x) := 1
2‖F(x)‖2

s.t. x ∈ Rn,
(2)

where ‖ · ‖ denotes the Euclidean norm. Conversely, if x∗ is a minimum of (2) and
f (x∗) = 0, then x∗ solves (1). The trust-region framework for solving system of
nonlinear equations (1) is a popular class of iterative procedures that generates a trial
step dk , in each iterate, by solving the following subproblem

min mk(xk + d) := 1
2‖Fk + Jkd‖2 = fk + dT gk + 1

2d
T J Tk Jkd

s.t. d ∈ Rn and ‖d‖ ≤ Δk,
(3)

where fk := f (xk), Fk := F(xk), Jk := F ′(xk), Jacobian of F(x) at xk , gk := J Tk Fk
and Δk > 0 is the trust-region radius. The ratio rk of the actual reduction to the
predicted reduction is defined by

rk := f (xk) − f (xk + dk)

mk(xk) − mk(xk + dk)
. (4)

Obviously, it can be concluded that the model will have a good agreement with the
original problem at the current iterate xk whenever rk is sufficiently close to 1. If
rk is greater than a positive constant μ, the trial step dk will be accepted, leading
to xk+1 := xk + dk , and the trust-region radius can be expanded or kept the same.
Otherwise, the trust-region radius must be diminished and the subproblem (3) will
be solved again to possibly find an acceptable trial point in the sequel of the process
Nocedal and Wright (2006).

To modify the trust-region methods, many important techniques are presented that
can improve the efficiency of the trust-region methods. A basic technique for improv-
ing the trust-region methods, namely the line search, has been developed in order to
prevent resolving the trust-region subproblem when the current trial step is rejected.
In their simplest form, line-search methods produce each iterate by searching for an
acceptable value of x along a line passing through the previous iterate. Toint (1982)
presents a linear search to find a lower value of the objective function at every iterate,
but it does not impose a sufficient decrease condition on the line search. In addition,
Nocedal and Yuan (1998) used a backtracking line search when the new value of the
objective function is less than the previous value, however they didn’t impose a suf-
ficient decrease condition on this line search. Gertz (1999) developed a trust-region
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methodwith amonotone backtracking line search. Themonotone backtrackingmethod
employs a sufficient decrease criterion at every iteration and has the appropriate con-
vergence properties but has some drawbacks. Some researchers showed that utilizing
monotone techniques may lead to decreasing the rate of convergence and increasing
the possibility of finding the global optimum (Ahookhosh et al. 2012; Fasano et al.
2006; Grippo et al. 1986, 1989; Grippo and Sciandrone 2007; La Cruz and Raydan
2003; Zhang and Hager 2004. In order to avoid these drawbacks of the Armijo-type
line search globalization techniques, the first nonmonotone strategy was introduced
by Grippo et al. (1986) for unconstrained optimization problems. In particular, they
changed the Armijo rule to accept the steplength αk by

f (xk + αkdk) ≤ fl(k) + δαkg
T
k dk, (5)

where δ ∈ (0, 1) and

fl(k) = max
0≤ j≤n(k)

{ fk− j }, k ∈ N ∪ {0}, (6)

in which n(0) := 0 and 0 ≤ n(k) ≤ min{n(k − 1) + 1, N } with N ≥ 0. Recently,
Ahookhosh et al. (2012), introduced a new nonmonotone backtracking strategy for
unconstrained optimization and exploited it into a modified trust-region framework in
order to prevent resolving the trust-region subproblem. They used advantages of new
nonmonotone line search with low computational cost whenever the trial step dk is
rejected.

Another approach to improve the trust-regionmethods is the adaptive radius that can
prevent increasing and decreasing the radius by controlling the size of the trust-region
radius. If the trust-region radiusΔk is very large, then the number of subproblems will
be increased and so computational costs to solve the problem may be increased, too.
On the other hand, if Δk is very small, then the total number of iterations is increased
and efficiency of the method will be possibly reduced. Sartenaer (1997) developed
an elaborate strategy that can automatically determine an initial trust-region radius.
The basic idea is to determine a maximal initial radius through many repeated trials
in the steepest descent direction in order to guarantee a sufficient agreement between
the model and the objective function. Zhang et al. (2002) proposed another adjustable
strategy to determine the trust-region radius based on information of gk and Hessian
matrix Bk in current iteration. They introduced the following adaptive formula

Δk+1 =
{
cΔk if rk < μ,

‖gk‖‖B̂−1
k ‖ if rk ≥ μ,

in which 0 < c < 1 and B̂k := Bk + i I is a positive definite matrix for some i ∈ N and
I is identity matrix. Zhang and Wang (2003) proposed an adaptive radius technique
for solving the system of nonlinear equations. This method updates the radius of
trust-region as follows

Δk+1 =
{
cΔk if rk < μ,

‖Fk‖δ if rk ≥ μ,
(7)
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where 0 < c < 1 and 0.5 < δ < 1 are constants. Although this method can somehow
prevent the trust-region radius staying too large, it has the following disadvantages

• The sequence generated by this method is superlinearly convergent with the con-
vergence order 2δ.

• The efficiency of the numerical results is largely dependent on the choice of δ.
• Thismethod can not prevent adequately generating the intensely small trust-region
radius.

Another interesting work on the trust-region radius to overcome some drawbacks (7)
was proposed by Fan and Pan (2010). They introduced the following adaptive trust-
region radius

Δk+1 =
{
cΔk if rk < μ,

M‖Fk‖ if rk ≥ μ,
(8)

with a constant M and c ∈ (0, 1). The two disadvantages of the method (7) can be
overcome almost by the adaptive radius (8). But, when ‖Fk‖ is large, because of the
selection of large constantM , the radius is very large andwill increase the total number
of solving subproblem. Therefore, the adaptive radius (8) does not sufficiently create
a suitable agreement between the constant M and ‖Fk‖. Consequently, they have a
high computational cost.

In this paper, we introduce a new adaptive radius strategy based on the nonmonotone
Grippo et al. (1986) which we can overcome some disadvantages of (7) and (8). One
of the most interesting advantages of this method is an attractive relation between the
nonmonotone line search and the adaptive radius that can increase the efficiency of the
method. The global convergence to first-order critical points together with superlinear
and quadratic convergence are investigated. The preliminary numerical results exhibit
the efficiency and the robustness of the proposed method for solving the system of
nonlinear equations.

The rest of this paper is organized as follows. In Sect. 2, a new adaptive trust-region
radius is described and then the new trust-region algorithm will be introduced. In
Sect. 3, the global convergence and the quadratic convergence of the new algorithm
under some suitable assumptions are investigated. Preliminary numerical results are
reported in Sect. 4. Finally, some conclusions are outlined in Sect. 5.

2 Motivation and algorithmic structure

A trust-region-based algorithm for solving a system of nonlinear equations will be
introduced in this section. After proposing a nonmonotone adaptive trust-region radius
and establishing a nonmonotone line search approach, we incorporate these strategies
into trust-region framework to construct a more effective procedure for solving the
nonlinear system.

If iterate is unsuccessful, the trust-region radius is produced based on the obtained
information of nonmonotone line search technique (αk) that will lead to decrease the
total number of function evaluations. Also, if iterate is successful or very successful,
then the radius of trust-region takes advantages fromnonmonotone technique to control
the size of radius trust-region. Consider the step acceptance constants 0 < μ1 < μ2 <
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1 and the trust-region scaling parameters 0 < η1 < 1 ≤ η2. Using the relation (6), we
define the new adaptive radius by

Δk+1 :=
⎧⎨
⎩

η1αkΔk if rk < μ1,

NFl(k+1) if μ1 ≤ rk < μ2,

η2NFl(k+1) if rk ≥ μ2,

(9)

in which
NFl(k) := max

0≤ j≤n(k)
{‖Fk− j‖}, k ∈ N ∪ {0}, (10)

in which n(0) := 0 and 0 ≤ n(k) ≤ min{n(k − 1) + 1, N } with N ≥ 0. Because,
the elements of the new sequence generated by {NFl(k)}k≥0 are always larger than
the elements of {‖Fk‖}k≥0, the trust-region radius cannot become too small as pos-
sible whenever iterates are not near the optimum. On the other hand, this sequence
is decrease and so it prevents the radius of trust-region staying too large whenever
iterates are not far away from the optimum. If iteration is very successful, we increase
the radius appropriately in a scale of {NFl(k)}k≥0 and so we find the optimum within
the greater region that will decrease the total number of iterations. Let xk denote the
current iterate. The first step in our algorithm is to compute a trial step dk and then
obtain the ratio (4). If rk ≥ μ1, then we accept the trial step and set xk+1 := xk + dk .
Otherwise, for computing αk , we use an approximately nonmonotone line search
technique (5) until the trust-region step reduces the objective function value and set
xk+1 := xk + αkdk .

3 Convergence theory

In this section, we will investigate the global and the quadratic convergence results of
the proposed algorithm given in Sect. 2.

Toverify the convergence analysis of the proposed algorithm, the following assump-
tions are required:

(H1) The level set L(x0) := {x ∈ Rn | f (x) ≤ f (x0)} is bounded for the initial
point x0 ∈ Rn and F(x) is continuously differentiable on a compact convex
set Ω containing the level set L(x0).

(H2) The matrix J (x) is bounded onΩ , i.e., there exist a constant M1 > 0 such that

‖J (x)‖ ≤ M1, ∀x ∈ Ω, (11)

see Fan and Pan (2010), Li and Fukushima (2000a), Li and Fukushima (2000b),
Yuan et al. (2011), Yuan (1998), Zhang and Wang (2003).

(H3) The matrix J (x) is uniformly nonsingular on Ω , i.e., there exist a constant
M0 > 0 such that

M0‖F(x)‖ ≤ ‖J (x)T F(x)‖ = ‖g(x)‖, ∀x ∈ Ω, (12)

see Li and Fukushima (2000b).
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Algorithm 1: LSTR (Line Search Trust-Region Algorithm)
Input: An initial point x0 ∈ Rn and parameters 0 < μ1 < μ2 < 1, 0 < η1 < 1 ≤ η2,

0 < σ1 < σ2 < 1, N > 0 and ε > 0;
Output: xb , fb;

1 begin
2 J0 := J (x0) ; Δ0 := NF0; NF0 := ‖F0‖; f0 := 1/2‖F0‖2; F0 := F(x0); n(0) := 0; k := 0;
3 while ‖Fk‖ ≥ ε do
4 compute dk by solving the subproblem (3);
5 compute F(xk + dk );

6 f (xk + dk ) := 1/2 ‖F(xk + dk )‖2;
7 determine rk using (4);
8 if rk ≥ μ1 then
9 xk+1 := xk + dk ;

10 else
11 set σ ∈ [σ1, σ2];
12 αk := 1;

13 while f (xk + αkdk ) > fl(k) + γαk g
T
k dk do

14 αk := σαk ;
15 compute F(xk + αkdk );

16 f (xk + αkdk ) := 1/2 ‖F(xk + αkdk )‖2;
17 end
18 xk+1 := xk + αkdk ;
19 end
20 Fk+1 := F(xk+1); fk+1 := f (xk+1); Jk+1 := J (xk+1);
21 compute n(k + 1) and NFl(k+1) according with (10);

22 set fl(k+1) := 1/2NF2
l(k+1) and determine Δk+1 using (9);

23 k ← k + 1;
24 end
25 xb := xk ; fb := fk ;
26 end

The cycle starting from Line 3 to Line 25 is called the outer cycle, and the cycle
starting from Line 13 to Line 17 is called the backtraking loop. In addition, if rk ≥ μ1
(Line 8), it is called a successful iteration.

Remark 1 At each iteration, strong theoretical and numerical results for the proposed
algorithm can be obtained if the step dk satisfies

mk(xk) − mk(xk + dk) ≥ β ‖gk‖ min

[
Δk,

‖gk‖
‖J Tk Jk‖

]
, (13)

and

gTk dk ≤ −β‖gk‖min

[
Δk,

‖gk‖
‖J Tk Jk‖

]
, (14)

for all k ∈ N∪{0}where 0 < β < 1 is a constant. Similar to Ahookhosh et al. (2012),
Nocedal and Yuan (1998), the trust-region subproblem can be solved such that (13)
and (14) hold.
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Remark 2 For k ∈ I1, if rk ≥ μ1, then f (xk + dk) ≤ fk , so we can conclude that
xk + dk ∈ Ω . Otherwise, since the backtraking loop is well-defined, f (xk + αkdk) ≤
fl(k), we have xk + αkdk ∈ Ω . In both cases, according to (H2), J (x) is uniformly
bounded on segments [xk, xk + dk] and [xk, xk + αkdk], respectively, i.e., there exists
a constant M1 > 0 such that

dTk J T (x)J (x)dk ≤ M2
1‖dk‖2, for all k ∈ N ∪ {0} and x ∈ [xk, xk + αkdk].

To start the convergence analysis, we define two index sets

I1 := {k | rk ≥ μ1} and I2 := {k | rk < μ1},

while I1 is the set of iterations that don’t need line search and I2 is the set of iterations
that need to use the line search.

Lemma 1 Suppose that the sequence {xk} is generated by Algorithm 1. Then, for
all k ∈ N ∪ {0}, we have xk ∈ L(x0) and the sequences {NFl(k)} and { fl(k)} are
decreasing and convergent.

Proof Using the definition of NFl(k), we have

NFl(0) = ‖F0‖ and ‖Fk‖ ≤ NFl(k).

By induction, we show that xk ∈ L(x0), for all k ∈ N. In that sense, we let xi ∈ L(x0)
for i = 1, 2, . . . , k. To do so, we consider two cases.

(i) k ∈ I1. We have

NF2
l(k)

2
− ‖F(xk + dk)‖2

2
≥ fk − fk+1 ≥ μ1(mk(xk) − mk(xk + dk)) > 0,

so

‖Fk+1‖ ≤ NFl(k) ≤ ‖F0‖.

(ii) k ∈ I2. Using (6) and (14), we have

f (xk + αkdk) ≤ fl(k) + γαkg
T
k dk ≤ fl(k).

This inequality, along with (10), shows that

‖Fk+1‖ ≤ NFl(k).

Thus, the sequence {xk} is contained in L(x0). Now, we prove that the sequence
{NFl(k)} is a decreasing sequence. We divide the proof into two cases.
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(i) k ≥ N . In this case, n(k) = N , for all k ≥ N . This fact that ‖Fk+1‖ ≤ NFl(k)

and the definition of NFl(k) result

NFl(k+1) = max
0≤ j≤N

{‖Fk+1− j‖} ≤ max

{
max

0≤ j≤N
{‖Fk− j‖}, ‖Fk+1‖

}

= max{NFl(k), ‖Fk+1‖} = NFl(k).

(ii) k < N . In this case, n(k) = k. Using an inductive approach, we can see that

NFl(k) = F0, ∀k.

Both cases show that the sequence {NFl(k)} is a decreasing one.According toAssump-
tion (H1) and xk ∈ L(x0), then {NFl(k)} is convergent. Since fl(k) = 1/2NF2

l(k), we
can easily conclude that { fl(k)} is also convergent. �

Lemma 2 Suppose that the sequence {xk} is generated by Algorithm 1 while dk sat-
isfies in (13) and (14). Then, the backtraking loop in Algorithm 1 is well-defined.

Proof The proof is straight for rk ≥ μ1. So, let rk < μ1. We show that the line search
process terminates in the finite number of steps. By contradiction, assume that there
exists k ∈ I2 such that

f (xk + σ iαkdk) > fl(k) + γ σ iαkg
T
k dk, ∀i ∈ N ∪ {0}. (15)

From (6), we have fk ≤ fl(k). This fact, along with (15), implies that

f (xk + σ iαkdk) − fk
σ iαk

> γ gTk dk, ∀i ∈ N ∪ {0}.

Since f is a differentiable function, by taking a limit, as i → ∞, we obtain

gTk dk ≥ γ gTk dk .

Using the fact that γ ∈ (0, 1
2 ), this inequality leads us to gTk dk ≥ 0 which contradicts

(14). �

Lemma 3 Suppose that Assumptions (H2) and (H3) hold, the sequence {xk} is gen-
erated by Algorithm 1 and dk is a solution of the subproblem (3). Then we have

β ‖gk‖min

[
Δk,

‖gk‖
‖J Tk Jk‖

]
≥ Lk‖Fk‖2,

where Lk := βM0 min
{
αk−1η1,

M0
M2

1

}
.
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Proof Using the fact that the (k − 1)-th iteration is successful along with (9), we can
see that

Δk =

⎧⎪⎪⎨
⎪⎪⎩

αk−1η1NFl(k−1) if μ1 ≤ rk−2 < μ2 and rk−1 < μ1,

αk−1η1η2NFl(k−1) if rk−2 ≥ μ2 and rk−1 < μ1,

NFl(k) if μ1 ≤ rk−1 < μ2,

η2NFl(k) if rk−1 ≥ μ2.

(16)

This fact, along with Lemma 1, implies that

Δk ≥ αk−1η1NFl(k−1). (17)

Using Assumptions (H2) and (H3), Remarks 1, 2 and the above inequality, we have

β‖gk‖min

[
Δk,

‖gk‖
‖J Tk Jk‖

]
≥ βM0‖Fk‖min

[
αk−1η1NFl(k−1),

M0‖Fk‖
M2

1

]

≥ βM0‖Fk‖min

[
αk−1η1NFl(k),

M0‖Fk‖
M2

1

]

≥ βM0‖Fk‖min

[
αk−1η1‖Fk‖, M0‖Fk‖

M2
1

]

= βM0 min

[
αk−1η1,

M0

M2
1

]
‖Fk‖2

= Lk‖Fk‖2,

for all k ∈ N ∪ {0}, where Lk = βM0 min

{
αk−1η1,

M0
M2

1

}
. Therefore, the proof is

completed. �

Lemma 4 Suppose that Assumptions (H2) and (H3) hold, the sequence {xk} is gen-
erated by Algorithm 1 and dk is a solution of the subproblem (3). Then, we have

gTk dk ≤ −Lk‖Fk‖, (18)

and
mk(xk) − mk(xk + dk) ≥ Lk ‖Fk‖2, (19)

where Lk := βM0 min
{
αk−1η1,

M0
M2

1

}
.

Proof By Lemma 3 and relation (14), we can obtain

gTk dk ≤ −β‖gk‖min

[
Δk,

‖gk‖
‖J Tk Jk‖

]
≤ −Lk‖Fk‖2
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and

mk(xk) − mk(xk + dk) ≥ β‖gk‖min

[
Δk,

‖gk‖
‖J Tk Jk‖

]
≥ Lk‖Fk‖2,

where Lk = βM0 min
{
αk−1η1,

M0
M2

1

}
. �


Lemma 5 Suppose that {xk} is generated by Algorithm 1 and there exists a positive
constant κ > 0 such that ‖dk‖ ≤ κ‖gk‖. Then, we have

lim
k→∞ NFl(k) = lim

k→∞ ‖F(xk)‖. (20)

Proof There are two cases to consider.

Case 1 k ∈ I1. It is followed from the definition of xk+1 and fl(k) ≥ fk that

fl(k) − f (xk + dk)

mk(xk) − mk(xk + dk)
≥ fk − f (xk + dk)

mk(xk) − mk(xk + dk)
≥ μ1.

Now, similar to the proof of Theorem 3.2 in Ahookhosh and Amini (2010), we can
deduce that

lim
k→∞
k∈I1

NFl(k) = lim
k→∞
k∈I1

‖F(xk)‖.

Case 2 k ∈ I2. For k > N , using (5) and (14), we obtain

fl(k) = f (xl(k)−1 + αl(k)−1dl(k)−1) ≤ fl(k)−1 + γαl(k)−1g
T
l(k)−1dl(k)−1.

This inequality along with Lemma 1 and (17) implies that

lim
k→∞
k∈I2

αl(k)−1g
T
l(k)−1dl(k)−1 = 0. (21)

On the other hand, from ‖dk‖ ≤ κ‖gk‖, (H2) and (17), we can conclude that

gTk dk ≤ −Lk‖Fk‖2

= − Lk

M2
1

(M1‖Fk‖)2

≤ − Lk

M2
1

‖gk‖2

≤ − Lk

κ2
1M

2
1

‖dk‖2.

This fact along with (21) implies that

lim
k→∞
k∈I2

αl(k)−1‖dl(k)−1‖ = 0.
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The rest of the proof, for k ∈ I2, can follow exactly similar to [Fan (2011), Page 4, 5].
�


Lemma 6 Suppose that the sequence xk is generated by Algorithm 1 and there exists
a positive constant κ > 0 such that ‖dk‖ ≤ κ‖gk‖. Then, for sufficiently large k ∈ I2,
the steplength αk satisfies

αk >
2σ(1 − γ )Lk

η2M2
1

.

Proof Let α = αk/σ . Because the backtraking loop of Algorithm 1 implies

fl(k) + γαgTk dk < f (xk + αdk),

using (6) concludes
γαgTk dk < f (xk + αdk) − fk . (22)

Furthermore, Taylor’s theorem implies that there is a ξ ∈ [xk, xk + αdk] such that

f (xk + αdk) − fk = αgTk dk + 1

2
α2dTk J (ξ)T J (ξ)dk,

while Remark 2 implies that there is a positive scaler M1 such that

1

2
dTk J (ξ)T J (ξ)dk ≤ M2

1

2
‖dk‖2,

for any ξ ∈ [xk, xk + αdk]. These facts along with (22) imply that

γ gTk dk < gTk dk + 1

2
M2

1α‖dk‖2,

or, equivalently,

−(1 − γ )gTk dk <
1

2
αM2

1‖dk‖2.

On the other hand, from (17), we obtain

(1 − γ )Lk‖gk‖2 <
M2

1

2

αk

σ
‖dk‖2.

By using (16), we have

‖dk‖ ≤ Δk ≤ η2NFl(k),
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hence

αk >
2σ(1 − γ )Lk‖Fk‖2

M2
2‖dk‖2

≥ 2σ(1 − γ )Lk‖Fk‖2
M2

2η2NF2
l(k)

.

This fact along with limk→∞
k∈I2

NFl(k) = limk→∞
k∈I2

‖F(xk)‖, for sufficiently large k,

results that

αk >
2σ(1 − γ )Lk

η2M2
2

,

which completes the proof of the lemma. �

At this point, the global convergence of Algorithm 1 based on the mentioned

assumptions of this section can be investigated.

Theorem 1 Suppose that Assumptions (H1)–(H3) hold. Then Algorithm 1 either stops
at a stationary point of f (x) or generates an infinite sequence {xk} such that

lim
k→∞ ‖Fk‖ = 0. (23)

Proof By contradiction, for all sufficiently large k, assume that there exist a constant
ε > 0 and an infinite subset K ⊆ N ∪ {0} such that

‖Fk‖ > ε, for all k ∈ K . (24)

Now, we consider the following two cases:

Case 1 k ∈ I1. Using (19), (24) and rk > μ1, it can be written

fk − f (xk + dk) ≥ μ1[mk(xk) − mk(xk + dk)] ≥ μ1Lk ‖Fk‖2 ≥ μ1ε
2Lk .

Case 2 k ∈ I2. Using (6), (18) and Lemma 6, we obtain

f (xk + αkdk) ≤ fl(k) + γαkg
T
k dk ≤ fl(k) − γ

2σ(1 − γ )Lk

η2M2
1

Lk‖Fk‖2

≤ fl(k) − γ
2σ(1 − γ )Lk

η2M2
1

Lkε
2.

In each two cases, taking a limit from both sides of the above inequalities, as k → ∞,
give limk→∞ Lk = 0. This clearly contradicts with Lemma 2. Therefore, (24) is
incorrect and the proof is completed. �

This theorem guarantees that the stoping criterion of Algorithm 1, that is ‖Fk‖ < ε,
is eventually held.

To establish the quadratic convergence rate of the sequence generated by Algo-
rithm 1, some additional assumptions are required, see Fan and Pan (2010), Yuan
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et al. (2011), Yuan (1998), Zhang and Wang (2003), Esmaeili and Kimiaei (2014),
Yamashita and Fukushima (2001). We assume x∗ is a solution (1). These conditions
can be stated as follows:

(H4) There exist constants c0 > 0 and ρ1 ∈ (0, 1) such that

‖F(x) − F(y) + J (y)(x − y)‖ ≤ c0‖x − y‖2, for all x, y ∈ N (x∗, ρ1),

where N (x∗, ρ1) := {x | ‖x − x∗‖ ≤ ρ1}.
It is clear that (H4) holds if F(x) is continuously differentiable and J (x) is Lipschitz

continuous.

Remark 3 Assumption (H3) and the mean value theorem conclude that there exist
constants c1 > 0 and ρ2 ∈ (0, 1) such that

c1‖x − x∗‖ ≤ ‖F(x)‖ = ‖F(x) − F(x∗)‖, for all x ∈ N (x∗, ρ2),

see Li and Fukushima (2000b).
For the purpose of our quadratic convergence, we set ρ := min[ρ1, ρ2].

Theorem 2 Suppose that Assumptions (H1)–(H4) hold, the sequence {xk} generated
by Algorithm 1 is convergent to x∗. Then, for sufficiently large k, we have

xk+1 = xk + dk,

furthermore, the sequence {xk} is quadratically convergent to x∗.

Proof If dk is a solution of (3) and k ∈ I2, then we first show that xk+1 = xk + αkdk .
Therefore, it is sufficient to show that αk = 1, for sufficiently large k. From this the
fact that dk is feasible for the subproblem (3), the relationship (15), Lemma 1, we
simply have

‖dk‖ ≤ Δk ≤ η2NFl(k−1) → 0, as k → ∞. (25)

Remark 2 implies that there is a positive scaler M1 such that

1

2
dTk J (ξ)T J (ξ)dk ≤ M1

2
‖dk‖2,

for any ξ ∈ (xk, xk +αdk). This fact along with the Taylor expansion, (16), (18), (27)
and Lemma 5 implies that

f (xk + dk) − fl(k) − γ gTk dk ≤ f (xk + dk) − fk − γ gTk dk

≤ (1 − γ )gTk dk + 1

2
dTk J (ξ)T J (ξ)dk

≤ −(1 − γ )Lk‖Fk‖2 + M2
2

2
‖dk‖2

≤ −(1 − γ )Lk‖Fk‖2 + (M2η2)
2

2
NF2

l(k) → 0,

as k → ∞. (26)
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for any ξ ∈ (xk, xk + αdk). Thus, for all sufficiently large k, αk = 1 is taken by
Algorithm 1, i.e., xk+1 = xk + dk .

At this point, the quadratic convergence of the sequence {xk} generated by Algo-
rithm 1 is investigated. Regarding the mean value theorem, one can easily deduce that
there is a ξk is between xk and x∗ such that

‖Fk‖ = ‖Fk − F(x∗)‖ ≤ ‖J (ξk)‖ ‖xk − x∗‖,

for all xk ∈ N (x∗, ρ). By (H2), it is derived that

‖Fk‖ ≤ M1‖xk − x∗‖. (27)

Lemma 5 results that the sequence {NFl(k)}k≥0 satisfies |NFl(k) − ‖Fk‖| ≤ ε for all
k ∈ N ∪ {0} sufficiently large. As a result of this fact and (27), as k → ∞, it can be
concluded that

NFl(k) ≤ ‖Fk‖ + ε ≤ M1‖xk − x∗‖ + ε, ∀ ε > 0,

leading to

NFl(k) ≤ M1‖xk − x∗‖, as k → ∞,

and so
‖dk‖ ≤ Δk ≤ η2NFl(k) ≤ η2M1 ‖xk − x∗‖ = O(‖xk − x∗‖). (28)

Now, we consider the following two cases:

Case 1 If ‖xk − x∗‖ ≤ ‖dk‖, since xk − x∗ is a feasible point of problem (3), then
(H4) results that

1

2
‖Fk + Jkdk‖2 = mk(xk + dk) ≤ mk(xk + (x∗ − xk)) = 1

2
‖Fk + Jk(xk − x∗)‖2

= 1

2
‖Fk − F∗ + Jk(xk − x∗)‖2

≤ c20
2

‖xk − x∗‖4. (29)

Case 2 If ‖xk − x∗‖ > ‖dk‖, then ‖dk‖‖xk−x∗‖ (x∗ − xk) is a feasible point of problem (3).
This fact along with (H4) implies that

1

2
‖Fk + Jkdk‖2 = mk(xk + dk) ≤ mk

(
xk + ‖dk‖

‖xk − x∗‖ (x∗ − xk)
)

= 1

2
‖Fk + ‖dk‖

‖xk − x∗‖ Jk(xk − x∗)‖2

≤ 1

2

‖dk‖2
‖xk − x∗‖2 ‖Fk − F∗ + Jk(xk − x∗)‖2
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≤ 1

2

‖dk‖2
‖xk − x∗‖2 c

2
0‖xk − x∗‖4

= c20
2

‖dk‖2‖xk − x∗‖2

≤ c20
2

‖xk − x∗‖4. (30)

By Remark 3, (28), (29) and (30), we conclude that

c1‖xk+1 − x∗‖ ≤ ‖F(xk+1)‖ = ‖F(xk + dk)‖ ≤ ‖Fk + Jkdk‖ + O(‖dk‖2)
≤ c20‖xk − x∗‖2 + O(‖xk − x∗‖2)
= O(‖xk − x∗‖2).

So

‖xk+1 − x∗‖ = O(‖xk − x∗‖2),

that shows the sequence {xk} generated by Algorithm 1 is quadratically convergent.
Therefore, the proof is completed. �


4 Preliminary numerical experiments

We now firstly report the results obtained by running Algorithm 1 (LSTR) in com-
parison with the traditional trust-region algorithm (TTR), the adaptive trust-region
algorithm from Zhang and Wang (2003) (ATRZ), the adaptive trust-region algorithm
of Fan and Pan (2010) (ATRF) on the set of some nonlinear system of equations.
For all of these codes, the trust-region subproblems are coded due to Steihaug-Toint
procedure, see Conn et al. (2000). The Steihaug-Toint algorithm terminates at xk + d
when

‖∇ fk(xk + d)‖ ≤ 0.1min

{
1

k + 1
, ‖∇ fk(xk)‖

}
‖∇ fk(xk)‖,

holds. The Jacobian matrix Jk can be either evaluated analytically by a user-supplied
function or approximated using finite-differences formula provided by the code. More
precisely, in the latter case, the Jacobian matrix Jk is approximated as follows :

[Jk]· j ∼ 1

h j
(F(xk + h j e j ) − Fk),

where [Jk]· j denotes the j-th column of Jk , e j is the j-th vector of the canonic basis
and

h j :=
{√

εm if xk j = 0,√
εmsign(xk j )max

{
|xk j |, ‖xk‖1

n

}
otherwise,

for more details see Bellavia et al. (2004). All codes are written in MATLAB 9 pro-
gramming environment with double precision format in the same subroutine. In our
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numerical experiments, the algorithms are stopped whenever the total number of iter-
ates exceeds 1000, or when

‖Fk‖ ≤ 10−5√n.

During implementations, we verified whether the different codes converged to the
same point, and data is provided only for problems in which all algorithms converged
to the identical point.

LSTR takes advantages of the parameters μ1 = 0.1, μ2 = 0.9, η1 = 0.25, η2 = 3,
γ = 10−4, M = 10, σ1 = 0.1, σ2 = 0.5 and at Step 2 the scalar σ is computed
by means of a quadratic interpolation formula. For LSTR, the trust-region radius is
updated by

Δk+1 :=
⎧⎨
⎩

η1αk‖dk‖ if rk < μ1,

NFl(k+1) if μ1 ≤ rk < μ2,

η2NFl(k+1) if rk ≥ μ2,

and n(k + 1) is updated by n(k + 1) := min{n(k) + 1, N } where n(0) := 0. TTR
employs the parameters μ1 = 0.1, μ2 = 0.9 where the trust-region radius like Conn
et al. (2000) is computed by the following formula

Δk+1 :=
⎧⎨
⎩
c1‖dk‖ rk < μ1,

Δk μ1 ≤ rk ≤ μ2,

c2Δk rk ≥ μ2,

where c1 = 0.25 and c2 = 3. We also decide to follow the literature Toint (1986)
in exploiting Δ0 = 1 as an initial trust-region radius for TTR. The parameters of
ATRZ and ATRF are chosen the same as what proposed in articles Zhang and Wang
(2003) and Fan and Pan (2010), respectively. The results for considered algorithms are
summarized in Table 1. In this table, Ni and N f respectively indicate the total number
of iterates and the total number of function evaluations. Test problems were selected
from wide range of literatures: problems 1–40 are taken from La Cruz et al. (2004)
and problems 41–46 are selected from Lukšan and Vlček (1999).

It is followed from Table 1 that in most cases the total number of iterates and
function evaluations of the LSTR are less than the other presented algorithms, and the
algorithms solve all of test functions successfully. In spite of the fact that it generally
seems that the performance of LSTR is better than other presented algorithms. In this
point, to demonstrate the overall behavior of the algorithms and get more insight about
the performances, use the performance profile proposed by Dolan and Moré in Dolan
and Moré (2002) and show performance of algorithms, based on both Ni and N f ,
in Figs. 1 and 2 respectively. In this procedure, the profile of each code is measured
considering the ratio of its computational outcome versus the best numerical outcome
of all codes. This profile offers a tool for comparing the performance of iterative
processes in statistical structure. In the following figures, P designates the percentage
of problems which are solved within a factor τ of the best solver.

Figure 1 clearly indicates that LSTR outperforms ATRZ and ATRF regarding the
total number of iterates. In particular, LSTR has the most wins in nearly 89% of the
tests with the greatest efficiency. Meanwhile, in the sense of the ability of completing a
run successfully, it is the best among considered algorithms because it grows up faster
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Table 1 Numerical results

Problem name Dim TTR ATRZ ATRF LSTR
Ni /N f Ni /N f Ni /N f Ni /N f

1. Exponential 1 500 3/4 3/4 3/4 3/4

2. Exponential 2 500 2/3 2/3 2/3 2/3

3. Extended Rosenbrock 500 15/20 13/14 10/17 9/10

4. Chandrasekhars H-equation 500 5/6 9/10 3/4 4/5

5. Trigonometric 100 Failed Failed Failed 9/13

6. Singular 500 17/18 33/34 14/15 14/15

7. Logarithmic 500 6/7 8/9 4/5 4/5

8. Broyden tridiagonal 500 5/6 4/5 4/5 4/5

9. Trigexp 500 20/28 8/21 8/39 11/15

10. Variable band 1 500 10/12 38/40 8/18 9/11

11. Variable band 2 500 12/17 61/63 10/25 10/12

12. Function 15 500 12/15 16/17 8/9 8/9

13. Strictly convex 1 500 6/7 6/7 4/5 4/5

14. Strictly convex 2 500 9/10 11/12 7/8 7/8

15. Penalty 500 5/6 71/72 4/5 27/28

16. Zero Jacobian 500 16/17 13/14 13/14 13/14

17. Geometric programming 100 13/14 144/145 39/40 13/14

18. Function 21 501 7/8 12/13 5/6 5/6

19. Linear function-full rank 1 500 9/10 51/52 2/3 2/3

20. Linear function-full rank 2 500 2/3 2/3 2/3 2/3

21. Brown almost linear 500 2/3 2/3 2/3 2/3

22. Variable dimensioned 500 21/22 20/21 20/21 20/21

23. Geometric 100 10/11 128/129 33/34 10/11

24. Extended Powel singular 500 1/2 1/2 1/2 1/2

25. Function 27 500 16/17 13/14 13/14 13/14

26. Tridimensional valley 501 9/10 7/8 6/7 6/7

27. Complementary 500 7/8 11/12 6/7 6/7

28. Hanbook 500 3/4 3/4 3/4 3/4

29. Tridiagnal system 500 60/72 56/113 60/356 21/22

30. Five-diagonal system 500 Failed Failed Failed 16/18

31. Seven-diagonal system 500 81/89 Failed Failed 21/23

32. Extended Freudentein and Roth 500 17/18 13/14 13/14 13/14

33. Extended cragg and levy 500 23/24 90/91 21/38 18/19

34. Extended Wood 500 6/7 4/5 4/5 4/5

35. Triadiagnal exponential 500 5/6 2/3 2/3 2/3

36. Brent 500 13/14 11/12 11/12 11/12

37. Thorech 500 9/12 8/13 8/26 9/11

38. Trigonometric system 500 2/3 2/3 2/3 2/3

39. Broyden banded 500 6/7 5/6 5/6 5/6
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Table 1 continued

Problem name Dim TTR ATRZ ATRF LSTR
Ni /N f Ni /N f Ni /N f Ni /N f

40. Discrete integral equation 500 2/3 2/3 2/3 2/3

41. Countercurrent reactors 1 504 14/19 82/83 10/12 9/10

42. Singular Broyden 500 10/11 11/12 9/10 9/10

43. Structured Jacobian 500 11/14 15/16 8/15 8/9

44. Extended Powell Singular 500 12/13 30/31 11/21 11/12

45. Generalized Broyden banded 500 6/7 5/6 5/6 5/6

46. Extended powell badly scaled 500 81/117 756/757 102/146 17/18

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

TTR

ATRZ

ATRF

LSTR

Fig. 1 Iterates performance profile for the presented algorithms

than the others and reaches 1 more rapidly. However, as illustrated in Fig. 2, LSTR
implements remarkably better than the others where it has most wins in approximately
96% of performed tests concerning the total number of function evaluations. Further-
more, Figs. 1 and 2 show similar patterns in the sense of the ability of completing a run
successfully. As a result, this fact directly implies that the total number of solving the
trust-region subproblems is notably decreased thanks to using the LSTR algorithm.

Summarizing our discussion, we employ a large set of problems that occur in
applications while the obtained results suggest that LSTR constitutes an efficient and
robust approach for solving the nonlinear system of equations which outperforms
some well-known codes in this field.
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Fig. 2 Function evaluations performance profile for the presented algorithms

5 Concluding remarks

The present paper proposes a new trust-region algorithm for solving a system of non-
linear equations by combining two techniques of adaptive radius and nonmonotone
line search. The adaptive technique is used to decrease the total number of iterations,
because of the optimum found within the greater region. The nonmonotone line search
technique is applied to prevent breaking the trail step that in each case declines the num-
ber of solving subproblems leading to decreasing computational costs. Nevertheless,
these modifications in the traditional trust-region procedure are favorably encourag-
ing, the global and the quadratic convergence properties of the proposed algorithms are
established. Preliminary numerical results on large set of nonlinear systems indicate
that the method proposed will have significant profits in computational costs.

References

AhookhoshM, Amini K (2010) A nonmonotone trust-region method with adaptive radius for unconstrained
optimization. Comput Math Appl 60:411–422

Ahookhosh M, Amini K, Peyghami MR (2012) A nonmonotone trust-region line search method for large-
scale unconstrained optimization. Appl Math Model 36:478–487

Bellavia S, Macconi M, Morini B (2004) STRSCNE: a scaled trust-region solver for constrained nonlinear
equations. Comput Optim Appl 28:31–50

Conn AR, Gould NIM, Toint PhL (2000) Trust-region methods. Society for Industrial and Applied Mathe-
matics SIAM, Philadelphia

Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program
91:201–213

123



K. Amini et al.

Esmaeili H, Kimiaei M (2014) A new adaptive trust-region method for system of nonlinear equations. Appl
Math Model 38:3003–3015

Esmaeili H, KimiaeiM (2015) An efficient adaptive trust-region method for systems of nonlinear equations.
Int J Comput Math 92(1):151–166

Fan JY (2005) Convergence rate of the trust region method for nonlinear equations under local error bound
condition. Comput Optim Appl 34:215–227

Fan JY(2011)An improved trust region algorithmfor nonlinear equations.ComputOptimAppl 48(1):59–70
Fan JY, Pan JY (2010) A modified trust region algorithm for nonlinear equations with new updating rule of

trust region radius. Int J Comput Math 87(14):3186–3195
Fasano G, Lampariello F, Sciandrone M (2006) A truncated nonmonotone Gauss–Newton method for

large-scale nonlinear least-squares problems. Comput Optim Appl 34(3):343–358
Fischer A, Shukla PK, Wang M (2010) On the inexactness level of robust Levenberg–Marquardt methods.

Optimization 59(2):273–287
Gertz EM (1999) Combination trust-region line-search methods for unconstrained optimization. University

of California San Diego, San Diego
Grippo L, Lampariello F, Lucidi S (1986) A nonmonotone line search technique for Newton’s method.

SIAM J Numer Anal 23:707–716
Grippo L, Lampariello F, Lucidi S (1989) A truncated Newton method with nonmonotone linesearch for

unconstrained optimization. J Optim Theory Appl 60(3):401–419
Grippo L, Lampariello F, Lucidi S (1991) A class of nonmonotone stabilization method in unconstrained

optimization. Numer Math 59:779–805
Grippo L, Sciandrone M (2007) Nonmonotone derivative-free methods for nonlinear equations. Comput

Optim Appl 37:297–328
La Cruz W, Raydan M (2003) Nonmonotone spectral methods for large-scale nonlinear systems. Optim

Methods Softw 18(5):583–599
La Cruz W, Venezuela C, Martínez JM, Raydan M (2004) Spectral residual method without gradient infor-

mation for solving large-scale nonlinear systems of equations: theory and experiments. In: Technical
report RT-04-08, July 2004

Li DH, FukushimaM (2000a) A derivative-free line search and global convergence of Broyden-like method
for nonlinear equations. Optim Methods Softw 13:181–201

LiDH, FukushimaM (2000b)Aglobally and superlinearly convergentGauss–Newton-BasedBFGSmethod
for symmetric nonlinear equations. SIAM J Numer Anal 37(1):152–172
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