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ABSTRACT: The Orlicz spaces generated by dilatory functions are only   quasi-
Banach spaces  contrast to those generated by Orlicz functions which are Banach 
spaces, and their duals are Banach space also .   

1-Introduction :   

We shall introduce a background of the Orlicz space the word Orlicz came from the 
name of the mathematician Wiadyslaw Roman Orlicz. 

Orlicz spaces are generalization of   L� space their definition are very well known :if  

(W, ,)  is a measure space ,and 1 £  P £ ¥ then for any measurable function f : W®  

the  Lp-norm is defined to be 

∥ f ∥�= ( � |�(�)|� �μ(�))

W

�
� 

         for p <∞  . 

And ‖f‖∞ = ess sup�∈W |f(w) |     for p =∞  

Then we define the Banach space L�(W,  ,) to be the vector space of all measurable 

function f:W ⟶ ℂ  for which ‖f‖� is finite.  

Now. If  F: 0,¥)®0,¥) is an Orlicz function where  is non-decreasing convex with 

(0)=0 then we define the Luxemburg norm by   ‖f‖� = inf��c:∫ F(
|�(�)|

�Ω
�)dμ ≤ 1 �  

for all measurable function  and define Orlicz space L� (W, ,) to be those 

measurable function  for which ‖f‖� is finite the Orlicz space L� is a true 

generalization of  L�  at least for p < ∞ . If F(t) = t� , then L� = L� with quality 

norms. 

We shall not work with this definition of the Orlicz space , however , but with 
different equivalent definition . this definition we give in the following section . 

2 – Definitions : We first define - function . these replace the notion of Orlisz – 
function in our discussions . 

Definition  (2-1) [Montgomery , 1999]  : A  – function is a function 

 : [0 ,¥) ® [0 ,¥) such that  

i) F(0)  =  0 
ii)  F(�) =  ∞�→ ∞

���  

iii) F is strictly increasing  
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iv)  is continuous 

However we will often desire that the function  has some control on its growth both 

from above and below for this reason we will often require that  be dilatory . 

We will say that a  – function  is dilatory if for some K� , K�  >  1 we have      

F(K�t) ³ K� F(t)  for all  0 £ t <  ¥ 

We will say that  F  satisfies the ∆�-conditon if  F�� is dilatory  

The definition of -function is slightly more restrictive than that of an Orlicz function  
in that we insist that   be strictly  increasing the notion of dilatory replaces the notion 

of convexity  

Definition( 2-2) [ Montgomery]  : if (W, ,) is a measure space and  is  

 – function , then we define Luxemburg functional of a measurable function  by  

‖f‖� = inf �c:� F(
|f(w) |

cΩ

 )dμ(w) ≤ 1�  

for every measurable function  ,we define the Orlicz space  L� to be the vector space 

of measurable function  ,for which ‖f‖� ¥ modulo functions that are zero almost 

everywhere . 

Definition(2-3) [Cong and Yongjin , 2008]   : quasi – norm on a(real or complex) 
vector space  is anon-negative real –valued function on   satisfying : 

(i) ‖x‖ = 0 if and only if x = 0 

(ii) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and λ ∈  R 

(iii)‖ x + y‖ ≤ K [‖x‖ +  ‖y‖]for some �ixed K ≥ 1 and all x , y ∈ X   

3- Results : 

Theorem (3-1) : If  F(t) is – function satisfy dilatory condition , then L� is a  

quasi – Banach space . 

Proof : -  

(i)   Let ‖x‖� = 0, since c > 0 ���‖x‖� = 0 , 

        then c is very small and greater than zero ,so x must equal to zero. 

        If x  =0 and c > 0 so ‖x‖� must be zero. 

(ii) since  is dilatory ,then F(K�w) ³ K� F(w)  and since  is  increasing so   K�=K� 

hence∫ F(
|���(�)|

�Ω
 )dμ(w )  ≥ K � ∫ F(

|�(�)|

�Ω
 )dμ(w)  
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inf �c:� F(
K�|f(w) |

cΩ

 )dμ(w)� £ K �inf �c:� F(
|f(w) |

cΩ

 )dμ(w)�  . 

      Since ∫ F(
Ω

��|�(�)|

�
 )dμ ≤ 1    

      So K� ∫ F(
|�(�)|

�Ω
 )dμ ≤ 1  . 

      Hence ‖K�f‖� = inf  { c ∶ ∫ F(
|���(�)|

�Ω
 )dμ(w ) ≤ 1 }  

                                 = |K�| inf  { c ∶ ∫ F(
| �(�)|

�Ω
 )dμ(w ) ≤ 1 }  

                                 = |K�|  ‖ f‖�  . 

iii) Since  is dilatory we have K� ∫ F(
Ω

|���|

‖�‖� ‖�‖
 )dμ ≤ ∫ F(

Ω

��|���|

‖�‖� ‖�‖
 )dμ 

Since x + y > �  �ℎ�� K�(x + y) >  K�(x) 

and  F (K�(x + y)) > �( K�(x)) 

Since   ‖x‖ +  ‖y‖ >  ‖x‖ 

So   
�

‖�‖� ‖�‖
<  

�

‖�‖
 

Then    ∫ F(
Ω

|���|

‖�‖� ‖�‖
 )dμ ≤

�

��
[( ∫ F(

Ω

��|���|

‖�‖� ‖�‖
 )dμ] 

                                              ≤
��

��
∫ F(

Ω

|�|

‖�‖
 )dμ + ∫ F(

Ω

|�|

 ‖�‖
 )dμ . 

Since ∫ F(
Ω

|�|

‖�‖
 )dμ ≤ 1         and       ∫ F(

Ω

|�|

‖�‖
 )dμ ≤ 1  . 

So     inf  { (‖x‖ +  ‖y‖)   ∶  ∫ F(
Ω

|���|

‖�‖� ‖�‖
 )dμ  ≤ 1}  . 

Hence ‖x + y‖ ≤  
��

��
 [ ‖x‖ +  ‖y‖ ] 

Let  K =  
��

��
     So   ‖x + y‖ ≤ K[ ‖x‖ +  ‖y‖ ] . 
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