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Abstract 

 
 When we approximate a function   f   in    which  changes  its  monotonicity   finitely  many, 
say  s  time, in , we wish  some  times   that  the  approximating   polynomial  follow these changes of  
monotonicity.  However it is well known  that  this  requirement  restricts very much the degree of 
approximation that the  polynomials  can  achieve,  namely  the  rate  of   . In  [1] we prove 

that relaxing the comonotonicity requirements in very small intervals  about  the  interior  extremes  and  
near  the  end  points,  what   we   called   nearly   comonotone approximation allows the polynomials to 
achieve a pointwise  approximation  rate  of .  Also we proved that even when we relax the 

requirement of  monotonicity  of  the  polynomials  on  sets of measures approaching 0,  is not 
reachable.  We  prove here that when  f  belongs to  the  Sobolev  space, allow estimates involving the kth 
modulus of smoothness of  for  . 
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1. Introduction 
 
Let , change monotonicity  times on . Let 

 set of points so that 
[ ]1,1−∈ pLf ] ]1≥s [ 1,1−=I
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iis yY 1== 1...1 1 <<<<− yys . Denote by  the 

collection of functions which change monotonicity at the points . A 
polynomial 

( ) ( )sY1∆
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nnp Ρ∈ the space of polynomials of degree not exceeding n  , is 
said to be comonotone with , on a set f [ ]1,1−=⊂ IE  if and only if  
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The degree of approximation of ( )( ) [ ]I 1,11 −∆∈ ps LYf  by comonotone 
polynomials is measured in the  norm for pL ∞<≤ p1 , and defined by  
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We also denote by , the set of all functions f on such that 

is absolutely continuous , and 

[ baW k
p , ] ]

)
[ ba,

( 1−kf ( )
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k Lf ∈ , such a space is called the 
Sobolev space.The rth symmetric difference of f is given by  
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Then the rth usual modulus of smoothness of [ ]baLf p ,∈  is defined by  

[ ]( ) ( )
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We will also use the so called mdulus−τ (or Sendov-Popov modulus), an 

averaged modulus of smoothness, defined for bounded measurable 

functions on [  by ]ba,

[ ]( ) ( ) [ ],,.,:,,, ,baLrpr p
fbaf δωδτ = [5] 
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is the rth local modulus of smoothness of f . From the definition one can 

easily see  

[ ]( ) [ ]( )∞∞ = bafbaf rr ,,,:,,, δωδτ . 

The following relationship between the ω and τ  moduli holds for any  

[ ] ∞≤≤∈ pbaWf p 1,,1 . 

                           [ ]( ) ( ) [ ]( )prpr bafrcbaf ,,,,,, 1 δδωδτ ′≤ − . [6]                  ( 1.1) 

If the interval [ 1,1− ]=I , is used in any of the above notation it will be 

omitted for the sack of simplicity, for example: 

( ) [ ]( )prpr ff 1,1,,:, −= δωδω , 

and we will also denote 

( ) [ ]( )∞−= 1,1,,:, δωδω ff rr . 

The moduli  ω and τ , measure the smoothness of  f  over the interval 

uniformly. It is well known that polynomials approximate better 
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near the end points of the interval than in the middle, and this leads 

to either pointwise estimates ( if ∞=p ) or the introduction of 

nonuniform moduli of smoothness the non uniform modulus that 

we use is the rth Ditizian Totik  [3] modulus of smoothness defined 

for   ( )ILf p∈
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with ( ) 21 xx −=ϕ . We have  
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However In Lemma 2.2.5 in [1] we proved that the moduli   and 

 for an f defined on 

rω

ϕωr [ ] [ ]1,1, −⊂= baJ   are equivalent if ( )aJ n∆≈  

with ( ) 221 1 −− +−=∆ nanan : 

Lemma 1.1  Let [ ] [ 1,1, −⊂ba ]  be such that ( ) ( )aab nρ≤− , where  is an 
absolute constant. Then for any nonnegative integer r there is a constant 

 such that  

11 ≥c

( )rc

[ ]( ) ( ) ( ) [ ]( )pnrpr baafrcbanf ,,,,,, 1 ρωωϕ ≥− . 
 Now let us turn to the comonotone approximation   

 

In [1]( Corollary 2.1.4, p52) we proved that  

Theorem 1.2   If ( ) ( ) ( )sp YILf 1∆∩∈ , then there is a constant  such that 

for 

( )sA

( )
( )sYd

sAn > , there is a polynomial ( ) ( )I snn Yp 1∆Ρ∈  satisfies 

                             ( ) ( ) ( ) ( )pppn nfscnfscpf 1
2

1
2 ,, −− ≤≤− τωϕ                     

where ( ) { }ssss yyyyyYd −−+= − 1,,...,,1min 121 .  The constant ( )sc depends only 
on s. On the other hand one cannot replace  in theorem 1.2  by , where ϕω2 3ω

kω  denotes the modulus of smoothness of order k. It is quite natural to ask 
whether one can strengthen theorem 1.2 in the sense of being able to 
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replace  by moduli of smoothness of higher order , if one willing to 
allow  not to be comonotone with f on a rather small subset of  I, what 
we called nearly comonotone approximation. In theorem 3.1.2 p.72 , in [1] 
we proved that in such a case it is possible to achieve the estimates  

2ω

np

( ) ( )ppn nfscpf 1
3 , −≤− τ . 

However this improvement can not be extend to  or . In theorem 4.1.1 
p. 87 [1] we show that even when we relax the requirement of 
monotonicity of the polynomials on sets of measures approaching zero,  
or is not reachable. 
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In this paper we prove that if we assume  f  belongs to the Sobolev space 
., then we can obtain estimates involving  moduli of higher orders ( )IWp

1

 
Theorem 1.3. For each , there is a constant 0>A ( )Askc ,, c for which if 

 ( ) ( )∩∆∈ sYf 1 ( )IWp
1 then for every  a polynomial kn ≥ nnp Ρ∈ which is 

comonotone with f on exists such that  ( sYnAI ,/\ Ο )

               ( ) ( ) ( )( )pkpkpn nfnf
n

Askcpf 11 ,,1,, −− ′+′≤− τωϕ .                     (1.2) 

 
2. The proof of the main result 
Let  be fixed. We construct a piecewise polynomial  1≥k
                                            ( nYOk s

S ,,1+ )Σ∈ ,                                                 (2.1) 
which is comonotone with f on ( )nmYOI s ,\ , and sufficiently close to it. To 
this end we introduce the following  
Lemma 2.1 [1]  If f is monotone function in [ ] 1,,1 <hbaWp , the there is a 
monotone polynomial  interpolating f at 0 and h, such that  11 −− ∈ rr Pp

[ ] [ ]( )prhLr hhfchpf
p

,0,,1,01 ′≤− −− ω . 

For , there is a polynomial ⊄njI . ( nYO s , )
njj

pp
,

=  of degree k≤ , which 
interpolates f at both end points of  for which  njI .

                                 [ ] ( )
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,
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Then from Theorem 1.2 since ( ) ( )pkpnjnjk nfcIIf 1

,, ,,, −′≤′ ϕωω , so we have  

                                          [ ] ( )pkILj nfcnpf
njp

11 ,
,

−− ′≤− ϕω                           (2.3) 
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Here and for the rest of the proof constants c are absolute constants and 
may depend on k and s or k, and m, they may differ at occurrences, even if 
they appear in the same line. 
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For each , we obtain by Lemma 2.1 , a polynomial of degree 

which is comonotone with  f  on 
vÔ vq

k≤ ( )nmYOO sv ,/ˆ  , such that  
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has discontinuities at the end points of , and we alter it to obtain 
continuous piecewise S which is comonotone with f on  , 
satisfies (2.1), and by virtue of (2.3) and (2.4) 

vÔ
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Since S is a polynomial of degree at most k on each , then it changes 
monotonicity at most k-1 there. Hence there is 

vÔ
( )nmYOY s ,⊂∗ , containing 

 points such that either ( )sks 1−≤∗
( ) ( )∗∆∈ YS 1 , or ( ) ( )∗∆∈− YS 1 . Since , it 

follows that , whence  
2≥m

( ) ( nYOnYO ss ,2, ⊂ )
( )nYOkS 2,,1 ∗+Σ∈ . 

In our proof of this theorem we make use of the following lemma 3.2.22 , 
p. 81 from [1]  
Lemma 2.2. If ( )

( ) ( )I snYOk YS 1
,,1 ∆Σ∈

∗
, then  

( ) ( ) ( ) ( )pmsnc nSskcYSE 11 ,,,
1
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In particular 
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Then applying Lemma 2.2, and conclude that there is a polynomial p of 
degree , which is comonotone with S everywhere on I, and such that nc7≤
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It is readily seen that p is comonotone with f on ( )nmYOI s ,\ , and combining 
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Then by the relationship (1.1), we have 
( ) ( ) ( )( )pkpkp
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n

rcpf 11 ,,1 −− +′≤− ωωϕ . 

Given , and . Applying the above to 7cn ≥ 2≥m [ ]71 / cnn = and so 
big that nm divides . We obtain a polynomial  of degree , which 
is comonotone with f  on 

71 mcm ≥

11mn np n≤

( )nmYOI s ,\  such that (1.2) satisfied. Thus a proper 
choice of   yields our theorem for and for ( )Amm = 7cn ≥ 7cnk ≤≤ , our 
theorem follows from Lemma 2.1. This completes the proof   ♠ 
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