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Iron oxide nanoparticles have gained recently much attention due to their out-
standing applications including gas sensors, catalysis, optical magnetic record-
ing, electronic devices, and biomedical applications. Different methods have
been employed in order to generate iron oxide nanoparticles of required size
and morphology to use potentially in many field sectors. In this review, sum-
maries of importance, structure and properties of Fe,O; nanoparticles are
demonstrated. Recently, a number of researchers have been developed synthe-
sis methods for obtaining iron oxide nanoparticles, which are classified into
basic methods: physical, chemical and biological syntheses. A detailed over-
view of different applications for iron oxide nanoparticles is presented.

HanouactTuaku okcuny PepyMy OCTaHHIM YacoM IIPUBEPHYJIU BEJUKY yBary
3aBAAKU CBOIM BUIATHUM 3aCTOCYBAHHAM, IO BKJIIOUAIOTH Ta30Bi JaTUMKU, Ka-
TaJIi3y, ONTUYHUI MarHeTHUI 3aIliC, eJIeKTPOHHI MPUCTPOI, a TAKOK OioMeqmy-
Hi 3acTocyBaHHA. PisHi MeTonm Oy BUKOPUCTAHI AJIA TOTO, 100 r'eHepyBaTU
HAHOYACTUHKY OKcuay PepyMy HeoOXimgHoro poamipy Ta mopdoJiorii aia more-
HI[IAHOTO BHUKOPHCTAHHA B 0araThboX CEKTOpPax MOJISI MiAJbHOCTH. ¥ I[bOMY
OTJIAMI IIPOJEMOHCTPOBAHO PE3I0ME BaKJIMBOCTi, CTPYKTYPU Ta BJIACTUBOCTEM
HaHouacTuHOK Fe,0,;. OcTanHiM yacom paz DOCTiTHUKIB pO3pOOUIN METOLY CU-
HTe3U OfepPrKaHHA HAaHOUACTUHOK okcuny Pepymy, AKi KaacudikyoTbCsa Ha OC-
HOBHi MeToau: (pisuuma, xemiuHa Ta Giosioriuna cuaTe3u. IIpencraBieHo mera-
JBbHUY OTJIA PIBHUX 3aCTOCYBAHb JJIS HAHOUACTUHOK OKcUIy Pepymy.
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1. INTRODUCTION

Nanotechnology has greatly contributed in several fields of research and
considered as a gate of the revolutionary technology in the 21 century.
This technology has seen recently an emerging area of science and be-
come a powerful tool for new nanosize particles and their applications
[1]. The science of nanotechnology includes the controlling of atoms and
molecules for creating new materials with different useful applications
in various fields [2]. Nanomaterials have gained a great deal of attention
due to their excellent optical, electrical, magnetic, and catalytic proper-
ties. As well known, the nanomaterials’ properties and their potential
applications have significant influence by means of phases, sizes, and
morphologies. Thus, much attention has been paid for synthesis of
nanostructured materials with controlled and novel morphologies [3].

Iron oxide nanoparticles at a size range 1-100 nm have gain a great
deal of interest due to its unique magnetic properties, which have a
great impact in electronics, medicine, and modern science. Iron oxide is
defined as mineral compound and shows different polymorphic forms
including maghemite (y-Fe,03), hematite (a-Fe,05) and magnetite (Fe;0,)
[4]. The iron oxide at nanoscale have been widely applied in different po-
tential applications such as solar cells [5, 6], pigments and paints [7],
gas sensors [8], photocatalyst [9—-11], fuel cell [12, 13], optical fibres
and telecommunication [14, 15], future lithium batteries [16], biosen-
sors [17], photo-detectors [18], sequestration of pollutants [19], drug
delivery[20, 21].

Iron oxide nanoparticles are commonly produced by using two main
methods: top-down and bottom-up method. Top-down route involves
mainly physical methods, whereas bottom-up routes mainly include
chemical and biological methods for fabrication of the nanoparticles
[22]. Chemical methods are the most decisive methods in widely ap-
plied production of iron oxide nanoparticles. The most common chemi-
cal methods are such as hydrothermal, sol-gel, microwave, co-
precipitation, etc. However, the preparation procedures are too com-
plex and generally required high temperatures [23, 24]. To overcome
these limitations, it has been recently flame synthesis, which has a
great benefit comparing with wet chemical methods [25]. This method
has shown to be an economic, easy, simplest, scalable process suitable
for achieving high production rates [26].

There are two basic routes employed to produce the nanoparticles,
which are classified into bottom-up and top-down ones. The bottom-up
route involves gas-phase and liquid-phase methods. In the literature,
the bottom-up approach includes a variety of synthesis methods to pro-
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duce the nanoparticles such as hydrothermal, co-precipitation, sol—gel,
microwave, etc. However, the limitations and drawbacks of these meth-
ods in term of cost, efficiency and complexity are great challenge [23,
24]. As proven in recent year, gas-phase processes can be considered as
one of the most effective ways to generate nanoparticles. This approach
possesses advantages including large scale-production, single-step and
continuous process, high purity of products. Moreover, it does not in-
volve all the extensive steps related to wet-chemistry methods [25, 26].
Flame synthesis has enormous valuable comparing the wet chemical
processes [25]. Combustion synthesis is the cost effective method and
has become simplest route for fabrication of the nanoparticles. General-
ly, flame synthesis occurs as a single-step process, while wet chemical
methods take multiple steps. Most importantly, combustion synthesis
has proven to be an easily scalable process that can achieve high product
yields and large continuous production quantity [26].

2. SYNTHESIS METHODS OF IRON OXIDE NANOPARTICLES

The most common approaches for producing iron oxide nanoparticles
are including physical, chemical and biological ones. The selection of
each method of synthesis has significant influence on producing iron
oxide with a desired size, shape, structure and magnetic properties.
The main approaches to synthetize iron oxide nanoparticles, highlight-
ing advantages and limitations of each technique are as follow [4].

2.1 Chemical Methods
2.1.1. Sol—Gel

Sol—gel processing and a wet chemical-synthesis approach are widely
used to synthesize magnetic nanoparticles. In this method, the process
starts with a chemical solution as precursor undertake different forms
of hydrolysis and polycondensation reactions. The solution is then
stirring to make a sol. The sol is then dried to form a gel by using chem-
ical reaction. The basic catalysis leads to producing a colloidal gel,
while a polymeric form of the gel is produced by means of acid cataly-
sis. The particles produced in this method are significantly influenced
by the rate of condensation and hydrolysis. The set of solvent parame-
ters, namely, concentration, pH, and temperature, have impact on the
size of the particles too [27, 28].

2.1.2. Hydrothermal Synthesis

The hydrothermal synthesis methods can be described as any heteroge-
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neous reactions for synthesizing inorganic materials. The process is
carried out by using aqueous solution above ambient temperature
above 200°C and higher pressure more than 2000 psi [29]. In this
method, the experimental procedure involves dissolving the reactants
in the water. Then, the solvent will be heated above the boiling point
for the desired duration [30].

The nanoparticle size increases, when both the amount of water and
the time of reaction increase.

2.1.3. Co-Precipitation

The co-precipitation method is the most commonly used as promising
route for generating iron oxide nanoparticles. This method has many
advantages such as simplicity, productivity, requires less procedures
and hazardous materials, and, therefore, become widely employed for
biomedical applications. The production of the iron oxide nanoparticles
is undertaken by an ageing of stoichiometric mixture of ferric salts and
ferrous in aqueous media [31]. Nanoparticle size, shape, and composi-
tion influence significantly on the used salts, the pH of the solution, the
temperature, the ratio of Fe?" and Fe®', and the media ionic strength.
Generally, this method is low cost and becomes much convenient for a
very high production rate. However, the great challenge is in the nano-
particles involving their aggregation and large size distribution [32].

2.1.4. Microwave Method

Microwave method has gain much interesting due to simpler, low cost, a
shorter crystallization time, and more energy efficient technique to syn-
thesize new improved nanostructural materials and short crystallization
time comparing with the conventional heating methods [33]. Therefore,
microwave method is a convenient technique for preparing nanocrystal-
line oxides with possible formation of new metastable phases and rapid
heating to reach the required temperature. The microwave route has
been developed by Mohammadi et al. [34] for preparing iron oxide nano-
particles. In this method, the experimental reaction happens by mixing a
solution of starting materials Fe(NO,)-2.9H,0 and urea. Then, the irra-
diation process for the mixed solution takes place under 540 W micro-
waves for 6 min. Finally, the calcination process undertakes for the pre-
pared sample at 800°C for 4 hours to obtain the Fe,0; nanoparticles.

2.2. Physical Method

The nanoparticles can be generated by using a number of physical
methods including laser ablation, chemical vapour decomposition,
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plasma synthesis, and combustion synthesis. However, the most im-
portant challenge with this method is the inability for controlling the
particle size in the nanometre range [35].

2.2.1. Gas-Phase Deposition

This route involves both chemical vapour deposition (CVD) and physi-
cal vapour deposition. In this method, iron is a raw material and is used
as metal for production of different products and outcome. The physi-
cal vapour deposition method is unique to form the composite and thin
film of nanoparticles. In this method, the particles’ formation takes
place because of the consolidation due to thermal treatment of compo-
sites onto a surface. In addition, the particles’ formation takes place
because of the supersaturation precursor molecules in the gaseous
phase. The CVD method has many advantages in case of producing the
large scale and quality thin films and nanotube of iron oxide. Besides,
the produced particles by gas-phase deposition are commonly of high
purity comparing with liquid-based synthesis. However, the most im-
portant challenge with gas-phase deposition technique is the risk of
contamination [36].

2.2.2. Thermal Decomposition

Thermal decomposition is effective and easiest route for generating
iron oxide nanoparticles. This method is based on the high-
temperature thermal decomposition of organometallic or coordinated
iron precursors in organic solvents to obtain the iron oxide nanoparti-
cles. In this method, the organometallic compound is used as precursor
molecules, and heating it leads to the production of iron oxide nano-
particles. Then, the heating process of the precursor causes decomposi-
tion of the iron oxide molecules. Iron oxide nanoparticles are produced
at outstanding quality and size range about 15 nm. However, the
method of thermal decomposition frequently involves complicated pre-
cursor synthesis, requires high temperatures and inert conditions [37].

2.2.3. Ball-Milling Method

The ball milling is a simplest and inexpensive mechanical technique for
producing iron oxide nanoparticles from the bulk. In this method, re-
ducing the size of the larger particles is undertaken by impact as the
balls drop from near the top of the shell. The ball milling method is ef-
ficient to produce of different-type nanoparticles on an industrial
scale. The nanoparticles produced are uniform and small sized and ex-
hibit different properties [38].
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2.2.4. Pyrolysis

The pyrolysis method is most commonly used for synthesis of nanopar-
ticles. This method has many advantages and outstanding due to the
cost-effective, efficient, simple, continuous process. The reaction
takes place in this method, when the precursor (liquid or vapour) burn
with the flame. Then, at high pressure, the precursor is transferred
into furnace that leads to recover nanoparticles. It can be improved in
the evaporation process by using plasma or laser instead of flame in
order to reach high temperatures [38].

2.2.5. Laser Ablation

Advanced laser ablation is a promising approach for synthesizing dif-
ferent types of nanoparticles from various solvent. However, the ag-
glomeration and controlled size distribution are the great challenges.
This method is efficient to produce various types of the nanoparticles
such as nanowires, carbon nanotubes, quantum dots, semiconductor
and core—shell nanoparticles. The production of the nanoparticles is
based on the growth and nucleation of laser-vaporized species. The na-
noparticles produced by laser ablation have high purity due to the high
purity of the target and ambient media in state of gas or liquid, which
are not contaminated from the reactor [39]. The formation mechanism
in laser ablation technique is based on the removal of surface atoms of
the iron precursor. The process takes place by focusing the laser beam
on the surface of a solid target material. The ambient media used is gas
or liquid. Then, the vaporizing target material takes place due to rap-
idly increasing the irradiation temperature [36, 39].

2.2.6. Combustion

Combustion synthesis has become most important route for synthesis
of inexpensive metal oxide nanoparticles. This method has advantages
in terms of single-step process, high purity, simplest and continuous
production. This method is more effective route and widely used over
wet chemical approaches. Thus, flame synthesis has been successfully
applied in the synthesis of iron oxide nanoparticles. In this method,
the flames produce high temperatures that important to activate pre-
cursor pyrolysis.

The final product obtained has outstanding characteristics including
controlled particle size distribution, phase and composition. The nano-
particles’ properties are highly affected by the altering flame operating
conditions: temperature, reactant concentration, stoichiometry, pres-
sure, burner configuration, precursor injection location [40, 41].
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2.3. Biological Methods

This method has been applied for large production of iron oxide nano-
particles that is based on biological sources such as bacteria, fungi,
plant extracts and protein-mediated ones. This technique has many
advantages in term of eco-friendly, simple, cost effective. However,
the characteristics of the particles produced are less stable, non-
uniform, and agglomerated. There are various part of plant can be used
to generate the nanoparticles such as leaf, stem, root, and fruit. In ad-
dition, bacteria have excellent ability to reduce the metal ions and,
therefore, are utilized for producing metallic and other novel nanopar-
ticles. Furthermore, fungi are considered as very efficient method to
produce metal oxide nanoparticles [36].

3. NANOPARTICLE TYPES, STRUCTURE AND APPLICATIONS

Iron oxide nanoparticles can be found in the three main form such as
hematite (a-Fe,0;3), maghemite (y-Fe,0;), and magnetite (Fe;0,). Iron
oxide has different crystal structures, which can be described in terms
of iron cations and oxygen anions in tetrahedral or octahedral intersti-
tial sites. For instance, the arrangement of the oxygen ions in hematite
are found in a hexagonal close-packed lattice, whereas, Fe(III) ions oc-
cupy octahedral sites. The arrangement of oxygen ions in maghemite
and magnetite is in a cubic close-packed structure. In magnetite,
Fe(III) ions are distributed randomly between tetrahedral and octahe-
dral sites and have inverse spinal structure [36].

Figure 1 shows the crystal structure of the three kinds of iron oxide.

Nanoparticles size, shape and synthesis method play a vital role in the
nanoparticles properties. Therefore, the nanoparticles are exhibit out-
standing optical, chemical, magnetic, and magnetic properties as results
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Fig. 1. The crystal structures of hematite, magnetite and maghemite [33].
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Properties Magnetite (Fe,0,) Maghemite (y-Fe,0,)

Density (g/cm’) 518 487

Melting point (°C) 1583-1597 -

Hardness 55 5

Type of magnetism Ferromagnetic Ferromagnetic

Curie temperature (K) 850 820-986

M, at 300K (A-m’/kg) 92-100 60-80

Standard free energy of formation AG (kJ/mol) -1012-6 =711

Crystallographic system Cubic Cubic or tetrahedral

Structural type Inverse spinel Defect spinel

Space group Fd3m P4,32 (cubic); P4,2,2 (tetragonal)

Lattice parameter (nm) a=0-8396 a=0-83474 (cubic); a = 0-8347, ¢ = 2:501
(tetragonal)

Fig. 2. The main physical properties of iron oxides [43].

of the nanosize effects. The size diameter less than 20 nm exhibit super-
paramagnetic behaviour that is more suitable for biomedical applica-
tions [23]. The morphology and distribution of particle size are also hav-
ing significant impact on the characterization of nanoparticles [42].

The main properties of nanoparticles including physical, optical and
magnetic properties are demonstrated in Fig. 2.

4. POTENTIAL APPLICATION OF NANOPARTICLES

Nanomaterials at nanoscale size ranging from 1 to 100 nm are exhibit
unique properties of materials. Iron oxide nanoparticles have received
considerable attention due to its possessing unique advantages over
other materials. Iron oxide nanoparticles have many attractive physi-
cal and chemical properties because of their nanoscale size. Thus, the
nanoparticle has become most important in many technological fields
and highly promising for a wide range of applications such as solar
cell, catalysis, electronics, energy storage, gas sensor, and biomedical
applications [44, 45]. The range of applications of nanoparticles in the
different areas is shown in Table.

5. CONCLUSION

Iron oxide nanoparticles are potentially employed in many industrial
sectors that enable technology for a variety of practical applications.
The nanoparticles’ properties and their diverse applications are signif-
icantly influenced by nanomaterials’ sizes, shape and structure.
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This review provides an updated and critical focusing on nanoparti-
cles, their classification, synthesis, providing examples of different
practical applications. The nanoparticles have different applications in
science such as electronics, solar cell, and biomedical field. A summary
review of nanoparticles’ synthesis including chemical and physical
route is presented.
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