Some Geometric Properties of Julia
 Sets of Maps
 Of The Form $\left(z z-\lambda z_{2}\right)$

> Naoum-Adil,Department of Mathematics, College of Science, Baghdad University. Talb-Iftichar Department of Mathematics, College of Education, Babylon University. M. And Al.salami-H.Q,Department of Mathematics, College of Education, Babylon University

Abstract

In this work, we will study the geometric properties of Julia sets of the quadratic polynomial maps of the form $\left(\lambda z-\lambda z^{2}\right)$ where λ is a non-zero complex. We show that Julia set is the unit circle if $\lambda=2$ and Julia set is the line segment if $\lambda=4$. If $1<|\lambda|<1+\sqrt{2}$. Then the Julia set is a simple closed curve, also if $1<|\lambda|<1+\sqrt{2}$ then the Julia set is a simple closed curve such that Julia set which contains no smooth arcs, and if $\lambda=1 \mp \sqrt{5}$ then the Julia set is infinitely many different simple closed curves.

Introduction

In complex dynamics, the iteration theory originated in 1910 [7] . Among the most important concepts in complex dynamics are Julia sets. They were studied by the French mathematician Gaston Julia (1893-1978) , who developed much of theory when he was recovering from his wounds in an army hospital during world war I . He published a long paper in French language in [4],Julia and Fatou looked at the iteration of the simplest quadratic map of the form $\left(z^{2}+c\right)$. In general, distinct maps have distinct Julia sets, however, there exist distinct polynomial maps, rational maps and entire maps that have the same Julia sets [5], [6].The Julia set of a polynomial typically has a complicated , self - similar structure. Therefore the Julia sets are fractals [2], [7] .However , there exist rational maps whose Julia sets fail to be quasi-self-similar [3] .

1 - Preliminary Definitions

Let C be the complex set or complex plane. The complex plane together with the point at infinity, denoted by ∞, is called the extended complex plane, it is topologically equivalent to the Riemann sphere. We put $C_{\infty}=C \bigcup\{\infty\}$. The metric space of the complex plane is the usual metric, while the metric space of the Riemann sphere is the chordal metric we use the symbol f^{n} to denote n-th iteration for $n \in N$,
$f: \mathrm{C} \rightarrow \mathrm{C}$ is smooth, if f is a C^{r} - diffeomorphism if f is a C^{r} homeomorphism such that f^{-1} is also C^{r}. A point $X \in X$ is called a fixed point if $f(x)=x$. It is a periodic with period n if $f^{n}(x)=x$, but $f^{m}(x) \neq x$ for $m<n .$. Let x be a periodic point of period n for f. The point x is hyperbolic if $\left|\left(f^{n}\right)^{\prime}(x)\right|$ $\neq 1, x$ is attracting periodic point if $\left|\left(f^{n}\right)^{\prime}(x)\right|<1$ and x is repelling periodic point if $\left|\left(f^{n}\right)^{\prime}(x)\right|>1$.

Remark (1-1)
The fixed points of $Q_{\lambda}(z)=\lambda z-\lambda z^{2}$ are $z=0$ or $z=\frac{\lambda-1}{\lambda}$. If
if $z=0$ then $\left|Q_{\lambda}^{\prime}(0)\right|=|\lambda|$. If $|\lambda|<1$, then $z=0$ is attracting fixed point. If $|\lambda|>$ 1 , then $z=0$ is repelling fixed point .If $z=\frac{\lambda-1}{\lambda}$ then $\left|Q_{\lambda}^{\prime}\left(\frac{\lambda-1}{\lambda}\right)\right|=|2-\lambda|$. If $3<|\lambda|$ or $|\lambda|<1$, then $Z=\frac{|\lambda|-1}{|\lambda|}$ is repelling fixed point. If $1<|\lambda|<3$, then $z=\frac{|\lambda|-1}{|\lambda|}$ is attracting fixed point . The critical point for Q_{λ} is 0.5 .

Definition (1-2) [1]

The family $\left\{f_{n}\right\}$ is said to be normal on U if every sequence of the f_{n} s has a subsequence which either
1.converges uniformly on compact subsets of U,or
2. converges uniformly to ∞ on U

Now, we will give the definition of the Fatou set and Julia set :

Definition (1-3) [8]

Let $f: C \rightarrow C \quad$ be a map. The Fatou set (stable set), $\mathrm{F}(f)$ is the set of points $z \in C$ such that the family of iterates $\left\{f^{n}\right\}$ is normal family in some neighborhood of z.The Julia set $J(f)$ is the complement of the Fatou set, that is $J(f)=\left\{z \in C:\right.$ the family $\left\{f^{n}\right\}_{n \geq 0}$ is not normal at $\left.z\right\}$ That is $J(f) \equiv C \backslash F(f)$

Also the previous definition can satisfy on the space C_{∞}.

Definition (1-5)[2]

Let $f: C_{\infty} \rightarrow C_{\infty}$ be a polynomial of degree $n \geq 2$. Let $K(f)$ denote the set of points in C whose orbits do not converge to the point at infinity .
That is $K(f)=\left\{z \in C:\left\{\left|f^{n}(z)\right|\right\}_{n=0}^{\infty}\right.$ is bounded $\}$. This set is called filled Julia set

Definition (1-6) [2]

Let $f: C_{\infty} \rightarrow C_{\infty}$ be a map. The escape set $A(\infty)$ of f is all those points that escape to infinity , that is $A(\infty)=\left\{z: f^{n}(z) \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right\}$.

We can say that $A(\infty)$ is the basin of attraction of ∞. Now we can state another definition for Julia set .

Definition (1-7) [2]
The Julia set is the boundary of the filled Julia set, that is $J(f)=\partial K(f)$. The complement of the basin of attraction of ∞ is the filled Julia set of f. That is $C_{\infty} \backslash A(\infty)=K(f)$.

3- Some Examples Of Julia Sets

We will put in this section two examples to find the Julia sets :

Example (3-1)

$J\left(Q_{2}\right)$ is the unit circle of $Q_{2}(z)=2 z-2 z^{2}$. The discussion of this example splits into three claims .

Let $D(a, b)=\{z \in C:|z-a|<b\}$, where $a \in C$ and $0<b \in R$.
Claim 1 : Let $z_{0} \in D(0,1)$, then $z_{0} \in F\left(Q_{2}\right)$. Let $z_{0} \in D(0,1)$, that is $\left|z_{0}\right|<1$. Suppose that $U=D\left(z_{0}, \frac{1-\left|z_{0}\right|}{2}\right)$. One can see that $U \subseteq D(0,1)$ for all $z \in \bar{U}$ and by using $\left|z-Z_{0}\right| \geq|z|-\left|Z_{0}\right|$, thus $\left|z-Z_{0}\right|<\frac{1-\left|Z_{0}\right|}{2}$, hence $|z|-\left|Z_{0}\right| \leq\left|z-Z_{0}\right|<\frac{1-\left|Z_{0}\right|}{2}$, therefore $|Z|-\left|Z_{0}\right|<\frac{1-\left|Z_{0}\right|}{2}$, thus $|z|<\frac{1}{2}-\frac{\left|Z_{0}\right|}{2}+\left|Z_{0}\right|$, hence $|z|<\frac{1}{2}+\frac{\left|z_{0}\right|}{2}$, that is for all $z \in \bar{U},|z|<\frac{1+\left|z_{0}\right|}{2}<1$. Hence $\bar{U} \subset D(0,1)$. For
all $z \in \bar{U}, Q_{2}(z)=2 z-2 z^{2}$, if $\left|Q_{2}(z)\right|=\left|2 z-2 z^{2}\right| \leq|2 z|+\left|2 z^{2}\right|<2\left|z^{2}\right|+2\left|z^{2}\right|$
$=4\left|z^{2}\right|$, thus $\left|Q_{2}^{2}(z)\right|=\left|4 z-12 z^{2}+16 z^{3}-8 z^{4}\right| \quad \leq|4 z|+\left|12 z^{2}\right|+\left|16 z^{3}\right|+\left|8 z^{4}\right|$
$<16\left|z^{4}\right|+16\left|z^{4}\right|+16\left|z^{4}\right|+16\left|z^{4}\right|=4^{3}\left|z^{4}\right|$,
hence for n-th iterate $\left|Q_{2}^{n}(z)\right| \rightarrow 0$ as $n \rightarrow \infty$.Therefore $\left\{Q_{2}^{n}\right\}$ is normal in $D(0,1)$, hence $D(0,1) \subseteq F\left(Q_{2}\right)$.

Claim2 :If $\left|Z_{0}\right|>1$, then $Z_{0} \in A_{2}(\infty)$.Let $\left|Z_{0}\right|>1$. $\left|Q_{2}\left(Z_{0}\right)\right|=\left|2 z_{0}-2 z_{0}^{2}\right| \leq 2\left|z_{0}\right|+2\left|z_{0}\right|^{2}<2\left|z_{0}^{2}\right|+2\left|z_{0}^{2}\right|=4\left|z_{0}^{2}\right|$, Then
$\left|Q_{2}^{2}\left(z_{0 z}\right)\right|=\left|4 z_{0}-12 z_{0}^{2}+16 z_{0}^{3}-8 z_{0}^{4}\right| \leq\left|4 z_{0}\right|+\left|12 z_{0}^{2}\right|+\left|16 z_{0}^{3}\right|+\left|8 z_{0}^{4}\right| \ll$ $16\left|z_{0}^{4}\right|+16\left|z_{0}^{4}\right|+16\left|z_{0}^{4}\right|+16\left|z_{0}^{4}\right|=4^{3}\left|z_{0}^{4}\right|$.Hence , for n-th as $n \rightarrow \infty$. Therefore $Z_{0} \in A_{2}(\infty)$.

Claim 3: If $\left|Z_{0}\right|=1$, then $Z_{0} \notin F\left(Q_{2}\right)$ and $Z_{0} \notin A_{2}(\infty)$. Let $\left|Z_{0}\right|=1$. Assume $Z_{0} \in F\left(Q_{2}\right)$ so there exists neighborhood $U_{Z_{0}}$, which has a subsequence of $\left\{Q_{2}^{n}\right\}$, and a map f with $Q_{2}^{n_{k}} \rightarrow f$ uniformly on $U_{Z_{0}}$. Now for all $\varepsilon>0$ there is $D\left(Z_{0}, \varepsilon\right) \subset U_{Z_{0}}$, by claim 1 , there is $Z_{1} \in D\left(Z_{0}, \varepsilon\right)$ with $\left|Z_{1}\right|<1$. It follows that $Q_{2}^{n_{k}} \rightarrow 0$ as $n \rightarrow \infty$, that is $f\left(z_{1}\right)=0$. Since $\left|z_{0}\right|=1,\left|f\left(z_{1}\right)\right|=1$, which is contradicts that f is analytic map (and therefore is continuous). Therefore $Z_{0} \notin F\left(Q_{2}\right)$. Similarly , we can proof that $Z_{0} \notin A_{2}(\infty)$. Therefore $Z_{0} \in J\left(Q_{2}\right)$ for $\left|Z_{0}\right|=1$. Hence $J\left(Q_{2}\right)$ is unit circle .

Example (3-2)

$J\left(Q_{4}\right)$ is the line segment [0,1] for $Q_{4}(Z)=4 z-4 z^{2}$, the discussion of this example splits into three claims .
Claim 1: The set $[0,1]$ is completely invariant. Consider $Q_{4}(x)=4 x-4 x^{2}$, thus $Q^{\prime}{ }_{4}(x)=4-8 x$, hence $Q^{\prime \prime}{ }_{4}(x)=-8$, therefore $Q_{4}(x)$ has maximum value 1 at $x=0.5$ since $Q_{4}(0.5)=1 . Q_{4}(x)$ is increasing on the interval $[0.5,1] . Q_{4}(x)$ has minimum value of 0 at $x=0$ or 1 , since $Q_{4}(0)=0$ and $Q_{4}(1)=0$. Thus $Q_{4}([0,1]) \subset[0,1]$.Therefore $[0,1]$ is not a subset of $A_{4}(\infty)$ Claim 2: $W=C_{\infty} \backslash[0,1]$ is $A_{4}(\infty) \quad$. Let
$z_{0} \in W$
with
$\left|Z_{0}\right|>1$
.If
$\left|Q_{4}\left(Z_{0}\right)\right|=\left|4 z_{0}-4 z_{0}^{2}\right| \leq 4\left|z_{0}\right|+4\left|z_{0}^{2}\right|<4\left|Z_{0}^{2}\right|+4\left|z_{0}^{2}\right|=8\left|Z_{0}^{2}\right|$, thus
$\left|Q_{4}^{2}\left(z_{0}\right)\right|=\left|16 z_{0}-80 z_{0}^{2}+128 z_{0}^{3}-64 z_{0}^{4}\right|$
$\leq\left|16 z_{0}\right|+\left|80 z_{0}^{2}\right|+\left|128 z_{0}^{3}\right|+\left|64 z_{0}^{4}\right|$
$<128\left|z_{0}^{4}\right|+128\left|z_{0}^{4}\right|+128\left|z_{0}^{4}\right|+128\left|z_{0}^{4}\right|=8^{3}\left|z_{0}^{4}\right|$. Hence , for n-th as $n \rightarrow \infty$. Therefore $Z_{0} \in A_{4}(\infty)$.

Claim 3 : $[0,1]$ is the Julia set for $Q_{4}(z)=4 z-4 z^{2}$, since $[0,1]=\partial A_{4}(\infty)$. Hence $[0,1]$ is the Julia set for Q_{4}.

4- Properties of Julia Sets

In this section, we introduce some geometric properties :

Proposition (4-1)

Suppose that $1<|\lambda|<1+\sqrt{2}$. Then $J\left(Q_{\lambda}\right)$ is a simple closed curve .
Proof :
$Q_{\lambda}(z)=|\lambda| z-|\lambda| z^{2}$, then $\left|Q_{\lambda}^{\prime}(z)\right|=|\lambda-2 \lambda z|<1$, thus $|\lambda||1-2 z|<1$, that
is $|1-2 z|<\frac{1}{|\lambda|}$, since $|a-b|>|a|-|b|$ thus $1-2|z|<\frac{1}{|\lambda|}$, hence $|z|>\frac{1}{2}-\frac{1}{2|\lambda|}$, or $|z|<\frac{1}{2}+\frac{1}{2|\lambda|}$, thus $|z-0.5|<\frac{1}{2|\lambda|}$, where $\frac{1}{2|\lambda|}$ is the radius and 0.5 is the center. We note if $1<|\lambda|<1+\sqrt{2}=2.4142135$, then $\frac{1}{2|\lambda|}<0.2071067,0.5+\frac{1}{2|\lambda|}<$ 0.7071067 and $0.5-\frac{1}{2|\lambda|}<0.2928933$.

The attractor point is $\frac{|\lambda|-1}{|\lambda|}<0.5857864$, while the critical point of Q_{λ} and the centre of circle is $0.5 .\left|Q_{\lambda}(0.5)\right|<0.6035533$ $\left|Q_{\lambda}(0.5857864)\right|<0.5857863$ and $\left|Q_{\lambda}(0.7071067)\right|<0.5$ but
$\left|Q_{\lambda}(0.2928933)\right|<0.5,\left|Q_{\lambda}(0.5+0.2071067 i)\right|<0.7071064$

$$
\begin{aligned}
& \left|Q_{\lambda}(0.5-0.2071067 i)\right|<0.7071064 \text { and }\left|Q_{\lambda}(0)\right|=0 \\
& \left|Q_{\lambda}(2)\right|<4.828427, \text { also }\left|Q_{\lambda}(0.1)\right|<0.2172792,\left|Q_{\lambda}(0.8)\right|<0.3862741 .
\end{aligned}
$$

Let Γ_{0} be the circle of radius 0.2071067 about $0.5 . \Gamma_{0}$ contains both the attracting fixed point (0.5857864) and the critical point 0.5 of Q_{λ} in its interior . Moreover, $\left|Q^{\prime}{ }_{\lambda}(Z)\right|>1$ for Z in the exterior of Γ_{0}, where 0 is repelling fixed point of Q_{λ}. For each $\theta \in S^{1}$, we will define a continuous curve $\gamma_{\theta}:[1, \infty) \rightarrow C$ having the property that $z(\theta)=\lim _{t \rightarrow \infty} \gamma_{\theta}(t)$ is a continuous parameterization of $J\left(Q_{\lambda}\right)$.To define $z(\theta)$, we first note that the preimage Γ_{1} of Γ_{0} under Q_{λ} is $Q_{\lambda}(z)=\lambda z-\lambda z^{2}=w$, thus $\lambda^{2}-\lambda z+w=0$, hence $z=\frac{1}{2} \mp \sqrt{\frac{1}{4}-\frac{w}{\lambda}}$.The preimage with respect to 0.7071067 and 0.2928933 are $Z=0.5 \mp 0.2071069$, that is with respect to 0.7071067 is $Z=0.7071069$ and $Z=0.2928931$, also with respect to 0.2928933 is $Z=0.7071069$ and $\quad Z=0.2928931$, while the preimage with respect to the attracting fixed point (0.5857864) is $Z=0.5 \mp 0.0857869$, that is $Z=0.5857869$ and $Z=0.4142131$, while the preimage with respect to the critical point (0.5) is $Z=0.5003162$ and $Z=0.4996838$, while the preimage for the points with respect to $(0.5+0.2071067 \mathrm{i})$ and $(0.5-0.2071067 \mathrm{i})$ are $\mathrm{Z}=0.5 \mp 0.2071062 \mathrm{i}$, that is $Z=0.5+0.2071062 i$ and $Z=0.5-0.2071062 i$ and $Z=0.5+0.2071062 i$ and $Z=0.5-0.2071062 i$, each value of the preimages under Q_{λ} have two values, as follows $\left|Q_{\lambda}(0.7071069)\right|<\quad 0.4999997 \quad$,also $\left|Q_{\lambda}(0.2928931)\right|<$ 0.4999997, $\left|Q_{\lambda}(0.5-0.2071062 i)\right|<0.7071059 \quad$ and $\left|Q_{\lambda}(0.5+0.2071062 i)\right|<$ 0.7071059 ,
and the value of the preimages under Q_{λ} for the critical point , as follows
$\left|Q_{\lambda}(0.5003162)\right|<0.603553 \quad,\left|Q_{\lambda}(0.4996838)\right|<0.6035531$.

While the value of the preimages under Q_{λ} for the attracting fixed point, as follows $\left|Q_{\lambda}(0.5857869)\right|<0.5857862$ and $\left|Q_{\lambda}(0.4142131)\right|<0.5857862$.

Then preimage Γ_{1} of Γ_{0} under Q_{λ} is a simple closed curve which contains Γ_{0} in its interior and which is mapped in a two - to - one formula onto Γ_{0}.

The fact that Γ_{1} is a simple closed curve follows from the fact that both the critical point (0.5) and its image lie inside Γ_{0}. Hence the curves Γ_{0} and Γ_{1} bound an annular region A_{1} (A_{1} may be regarded as a fundamental domain for the attracting fixed point for Q_{λ}) Let W be the standard annulus defined by $W=\left\{r e^{i \theta}: 1 \leq r \leq 2, \theta\right.$ arbitrary $\}$.Choose diffeomorphism $\varphi: W \rightarrow A_{1}$ which maps the inner and outer boundaries of W to the corresponding boundaries of A_{1}. See figure (1). This allows us to define the initial segment of $\gamma_{\theta}:[1,2] \rightarrow C$ by $\gamma_{\theta}(r)=\varphi\left(r e^{i \theta}\right)$. That is, γ_{θ} is the image of a ray in W under φ.

Fig. 1

For $r \geq 2$, may extend γ_{θ} as follows, since preimage Γ_{1} of Γ_{0} under Q_{λ} and the critical point in interior Γ_{0}, thus Q_{λ} has no critical points in the exterior of Γ_{1}. The preimages Γ_{2} of Γ_{1} under Q_{λ} are
$Z=0.5 \mp 0.2071072$, that is $Z=0.7071072$ and $z=0.2928928$ with respect to 0.7071069 , also have the same preimages with respect to 0.2928931 , while the preimages of critical points (0.5003162) and (0.4996838) are $Z=0.5 \mp 0.0004472$
that is $Z=0.5004472$ and $Z=0.4995528$ with respect to 0.5003162 and also for 0.4996838, while the preimages for the attracting fixed points are $z=0.5 \mp 0.0857875$ that is $Z=0.5857875$ and $z=0.4142125$ for (0.5857869) and also for (0.4142131) , while the preimages of points $(0.5+0.2071062 i)$ and $\quad(0.5 \quad-0.2071062 i)$ are $z=0.5 \mp 0.2071057 i$ that is $z=0.5+0.2071057 i$ and $z=0.5-0.2071057 i$ for ($0.5+0.2071062 i$) and also for (0.5-0.2071062i),each value of the preimages under Q_{λ} have four values, as follows $\left|Q_{\lambda}(0.7071072)\right|<0.4999995$ and $\left|Q_{\lambda}(0.2928928)\right|<0.4999995$ $\left|Q_{\lambda}(0.5-0.2071057 i)\right|<0.7071055$, and $\left|Q_{\lambda}(0.5+0.2071057 i)\right|<0.7071055$, the value of the preimages under Q_{λ} for the critical point , as follows $\left|Q_{\lambda}(0.5004472)\right|<0.6035528$ and $\left|Q_{\lambda}(0.4995528)\right|<0.6035528$.

While the value of the preimages under Q_{λ} for the attracting fixed point, as follows $\left|Q_{\lambda}(0.5857875)\right|<0.5857859$ and $\left|Q_{\lambda}(0.4142125)\right|<0.5857859$.

Hence there is a simple closed curve Γ_{2} which is mapped in a two - to - one formula onto Γ_{1}.Moreover, Q_{λ} maps the annular region A_{2} between Γ_{1} and Γ_{2} onto A_{1}, again in a two -to-one formula. Thus, the preimage of any γ_{θ} in A_{1} is a pair of non intersection curves in A_{2}, thus every point $\quad z \in A_{2}$, imply $f(z) \in A_{1}$. There is a unique such curve which meets the inner boundary Γ_{1}. Hence, for each θ, there is a unique curve in A_{2} which contains the point $\gamma_{\theta}(2)$, that is $\gamma_{\theta}(1)$ is boundary of Γ_{0} and $\gamma_{\theta}(2)$ is boundary of Γ_{1} and $\gamma_{\theta}(3)$ is boundary of Γ_{2}. We may thus sew together these two curves in the obvious way at this point , producing a single curve defined on the interval $[1,3]$. Continuing in this formula, we may extend each γ_{θ} over the entire interval $[0, \infty)$. Now recall that $\left|Q^{\prime}{ }_{\lambda}(z)\right|>k>1$ for positive integer k provided z lies in the exterior of Γ_{1}. Hence the length of each extension of γ_{θ} decreases geometrically. It follows that $\gamma_{\theta}(t)$ converges uniformly in θ and that $\lim _{t \rightarrow \infty} \gamma_{\theta}(t)=z(\theta)$, since $\lim _{t \rightarrow \infty} \gamma_{\theta}(t)$ is continuous, thus $z(\theta)$ is continuous and is a unique point in C for each θ.We claim that $z(\theta)$ parameterizes a simple closed curve
in C. To show that the image curve is simple, we must prove that if $z\left(\theta_{1}\right)=z\left(\theta_{2}\right)$, then $z(\theta)=z\left(\theta_{1}\right)$ for all θ with $\theta_{1} \leq \theta \leq \theta_{2}$, see fig. (3). $z(\theta)$ is a point by substituting $\theta=\theta_{1}$. However, if this was not the case , the portions of the curves Γ_{1}, $\gamma_{\theta_{1}}(t)$ and $\gamma_{\theta_{2}}(t)$ would bound a simply connected region containing each $z(\theta)$ in its interior. This implies that there is a neighborhood of $z(\theta)$ whose images under Q_{λ}^{n} remains bounded, thus $Z(\theta)$ is attracting but not repelling.
Hence $z(\theta) \notin J\left(Q_{\lambda}\right)$.But this is impossible. Therefore $J\left(Q_{\lambda}\right)$ is simple closed curve .

Fig. 2 (a) \& (b) the proof of the proposition (for $1<|\lambda|<1+\sqrt{2}$)

Proposition (4-2)

Suppose λ is a complex number and $1<|\lambda|<1+\sqrt{2}$. Then $J\left(Q_{\lambda}\right)$ is a simple closed curve such that Julia set which contains no smooth arcs .
Proof :
Suppose that λ is complex, that is $\lambda=\lambda_{1}+\lambda_{2} i$ and satisfies $1<|\lambda|<1+\sqrt{2}$.If Q_{λ} has repelling fixed point at $Z_{0}=0$. Then $\left|Q_{\lambda}^{\prime}(0)\right|=|\lambda|-2|\lambda|(0)=|\lambda|$, if $\lambda_{1} \neq 0$ then λ is not pure imaginary, by properties of complex analysis, thus Z_{0} does
not lie in a smooth arc in $z(\theta)$. For if this were the case, then the image of $z(\theta)$ would also be a smooth arc in $J\left(Q_{\lambda}\right)$ passing through Z_{0}. Since $Q_{\lambda}^{\prime}\left(Z_{0}\right)$ is complex , the tangents to these two curves $z\left(\theta_{1}\right)$ and $z\left(\theta_{2}\right)$ would not be parallel .Therefore $z(\theta)$ would not be simple at z_{0}, that is $z\left(\theta_{1}\right) \neq z\left(\theta_{2}\right)$. The preimage of Z_{0} are dense in $J\left(Q_{\lambda}\right)$.It follows that $J\left(Q_{\lambda}\right)$ contains no smooth arcs .

Example (4-3)

$J\left(Q_{\lambda}\right)$ is infinitely many different simple closed curves for $\lambda=1 \mp \sqrt{5}$.

First, let $\lambda=1+\sqrt{5}$. We now turn to the case of an attracting periodic rather than fixed point $. Q_{\lambda}^{2}(z)=z$, thus $Q_{\lambda}^{2}(z)-z=0$, hence $\lambda^{2} z^{2}-z\left(\lambda^{2}+\lambda\right)+(\lambda+1)=0$, therefore $z=\frac{\lambda+1}{2 \lambda} \mp \frac{1}{2 \lambda} \sqrt{\lambda^{2}-2 \lambda-3}$, thus $Z=0.5$ and $Z=0.809017$, which $Q_{\lambda}(0.5)=0.809017$ and $Q_{\lambda}(0.809017)=0.5$. Also $Q_{\lambda}^{\prime}(z)=\lambda-2 \lambda z$, thus $\left|Q_{\lambda}^{\prime}(0.5)\right|=0<1$ is an attracting fixed point .Therefore 0.5 and 0.809017 lie on an attracting periodic of period 2 .The dynamics of Q_{λ} on the real line relatively straight forward, there are two repelling fixed points at 0 and 0.6909829 , since Q_{λ} as two repelling fixed point $Z=0$ or $z=\frac{\lambda-1}{\lambda}=0.6909829$, that is $\left|Q_{\lambda}^{\prime}(0)\right|>1$ and $\left|Q_{\lambda}^{\prime}(0.699829)\right|>1$. The fixed point at 0.6909829 is the dividing point between the basin of attraction of 0.5 and 0.809017 . By proposition (4-1) , one may show that there are two simple closed curves γ_{0} and γ_{1} in $J\left(Q_{\lambda}\right)$ which surround 0.5 and 0.809017 respectively .The curves γ_{0} and γ_{1} meet at fixed point 0.6909829 . There is much more $J\left(Q_{\lambda}\right)$ however. The basin of attraction of 0.5 is not completely invariant because one preimage of the interior of γ_{0} is γ_{1} but there is another surrounding the other preimage of 0.5 is 0.190983 , since $Q_{\lambda}(z)=0.5$, thus $3.2360679 z^{2}-3.2360679 z+0.5=0$, hence $z=0.809017$ and $z=0.190983$. Therefore $Q_{\lambda}(0.190983)=0.5$. Hence there is a third simple closed curve in $J\left(Q_{\lambda}\right)$ surrounding 0.190983 as well . Now both
0.190983 and 0.809017 must have a pair of distinct preimages, each is surrounded by a simple closed curve in $J\left(Q_{\lambda}\right)$. Continuing in this formula, we get that the Julia set of Q_{λ} must contain infinitely many different simple closed curves. In the same way if $\lambda=1-\sqrt{5}$ then $\quad z=0.4999998$ and $z=-0.309017, Q_{\lambda}(0.4999998)=-0.309017$ and $Q_{\lambda}(-.0309017)=0.4999998$, also $\left|Q_{\lambda}^{\prime}(0.4999998)\right|<1$, thus -0.309017 and 0.4999998 lie on an attracting periodic of period 2 , also has two repelling at $Z=0$ and $z=1.809017$. Hence 0 is the dividing point between the basin of attraction of 0.309017 and 0.4999998 . There are two simple closed curves Γ_{0} and Γ_{1} in $J\left(Q_{\lambda}\right)$ which surrounds 0.4999998 and -0.309017 respectively .So that if $-1.2360679 z^{2}+1.2360679 z+0.999998=0 \quad$, then $z=-0.309017$ and $z=1.3091017$, also $Q_{\lambda}(1.309017)=0.4999998$. Hence there is third simple a closed curve in $J\left(Q_{\lambda}\right)$ surrounding 1.309017. See fig. (3) .

Fig. 3 Julia set for $\lambda=1 \mp \sqrt{5}$.

References

[1] Devaney , R.L , An Introduction to Chaotic Dynamical Systems , second edition, Addison-Weseley, 1989.
[2] Falconer , K.J. , Fractal Geometry , John Wiley \& Sons Ltd., England , 1990 [3] Jarvi ,P., Not all Julia sets are quasi-self-similar , Amer. Math. Soc. , Vol. 125 (1997) pp 835-837.
[4] Julia ,G. , Me`moiré sur I’ ite`ration des functions rationelles , J. Math. 8(1918) pp 47-245.
[5] Przytycki,F. and Levin , G. ,When do two rational functions have the same Julia set , Amer. Math. Soc. , Vol . 125 (1997) pp 2179-2190.
[6] Schmidt ,W. and Steinmetz , N., The Polynomials associated with a Julia set , Universitat Dortmund, Institut fur mathematik ,Dortmund ,Germany , 1980 .
[7] Devaney ,R. L., Cantor and Sierpinski, Julia and Fatou :Complex Topology Meets Complex Dynamics , (2003), (to apper).
[8] Erat,M., Iteration of rational maps , pl.physik . tu - berlin .

