Some Geometric Properties of Julia Sets of Maps Of The Form $(\lambda_z - \lambda_z^2)$

Naoum-Adil,Department of Mathematics, College of Science, Baghdad University. Talb-Iftichar Department of Mathematics, College of Education, Babylon University. M. And Al.salami-H.Q,Department of Mathematics, College of Education, Babylon University

Abstract

In this work, we will study the geometric properties of Julia sets of the quadratic polynomial maps of the form $(\lambda z - \lambda z^2)$ where λ is a non-zero complex .We show that Julia set is the unit circle if $\lambda = 2$ and Julia set is the line segment if $\lambda = 4$. If $1 < |\lambda| < 1 + \sqrt{2}$. Then the Julia set is a simple closed curve , also if $1 < |\lambda| < 1 + \sqrt{2}$ then the Julia set is a simple closed curve such that Julia set which contains no smooth arcs, and if $\lambda = 1 \mp \sqrt{5}$ then the Julia set is infinitely many different simple closed curves.

Introduction

In complex dynamics, the iteration theory originated in 1910 [7]. Among the most important concepts in complex dynamics are Julia sets. They were studied by the French mathematician Gaston Julia (1893 – 1978), who developed much of theory when he was recovering from his wounds in an army hospital during world war I. He published a long paper in French language in [4],Julia and Fatou looked at the iteration of the simplest quadratic map of the form $(z^2 + c)$. In general, distinct maps have distinct Julia sets, however, there exist distinct polynomial maps, rational maps and entire maps that have the same Julia sets [5], [6]. The Julia set of a polynomial typically has a complicated, self – similar structure. Therefore the Julia sets are fractals [2], [7]. However, there exist rational maps whose Julia sets fail to be quasi-self-similar [3].

1 - Preliminary Definitions

Let C be the complex set or complex plane. The complex plane together with the point at infinity, denoted by ∞ , is called the extended complex plane, it is topologically equivalent to the Riemann sphere. We put $C_{\infty} = C \bigcup \{\infty\}$. The metric space of the complex plane is the usual metric, while the metric space of the Riemann sphere is the chordal metric .we use the symbol f^n to denote n-th iteration for $n \in N$, $f: C \rightarrow C$ is smooth, if f is a C^r - diffeomorphism if f is a C^r -homeomorphism such that f^{-1} is also C^r . A point $x \in X$ is called a fixed point if f(x) = x. It is a periodic with period n if $f^n(x) = x$, but $f^m(x) \neq x$ for m < n.

Let x be a periodic point of period n for f. The point x is hyperbolic if $|(f^n)'(x)|$

≠ 1, x is attracting periodic point if $|(f^n)'(x)| < 1$ and x is repelling periodic point if $|(f^n)'(x)| > 1$.

Remark (1-1)

The fixed points of
$$Q_{\lambda}(z) = \lambda z - \lambda z^2$$
 are $z = 0$ or $z = \frac{\lambda - 1}{\lambda}$. If

if z = 0 then $|Q'_{\lambda}(0)| = |\lambda|$. If $|\lambda| < 1$, then z = 0 is attracting fixed point. If $|\lambda| > 1$

1, then z = 0 is repelling fixed point . If $z = \frac{\lambda - 1}{\lambda}$ then $\left| Q'_{\lambda} \left(\frac{\lambda - 1}{\lambda} \right) \right| = |2 - \lambda|$. If

 $3 < |\lambda|$ or $|\lambda| < 1$, then $z = \frac{|\lambda| - 1}{|\lambda|}$ is repelling fixed point. If $1 < |\lambda| < 3$, then

 $z = \frac{|\lambda| - 1}{|\lambda|}$ is attracting fixed point. The critical point for Q_{λ} is 0.5.

Definition (1-2) [1]

The family $\{f_n\}$ is said to be normal on U if every sequence of the f_n 's has a subsequence which either

1.converges uniformly on compact subsets of U, or

2. converges uniformly to ∞ on U

Now, we will give the definition of the Fatou set and Julia set :

Definition (1-3) [8]

Let $f: C \to C$ be a map. The Fatou set (stable set), F(f) is the set of points $z \in C$ such that the family of iterates $\{f^n\}$ is normal family in some neighborhood of z. The Julia set J(f) is the complement of the Fatou set, that is $J(f) = \{z \in C : \text{the family } \{f^n\}_{n \ge 0}$ is not normal at z } That is $J(f) \equiv C \setminus F(f)$

Also the previous definition can satisfy on the space C_∞ .

Definition (1-5)[2]

Let $f : C_{\infty} \to C_{\infty}$ be a polynomial of degree $n \ge 2$. Let K(f) denote the set of points in C whose orbits do not converge to the point at infinity. That is $K(f) = \{ z \in C : \{ |f^n(z)| \}_{n=0}^{\infty} \text{ is bounded } \}$. This set is called filled Julia set

Definition (1-6) [2]

Let $f : C_{\infty} \to C_{\infty}$ be a map. The escape set $A(\infty)$ of f is all those points that escape to infinity, that is $A(\infty) = \{ z : f^n(z) \to \infty \text{ as } n \to \infty \}$.

We can say that $A(\infty)$ is the basin of attraction of ∞ . Now we can state another definition for Julia set.

Definition (1-7) [2]

The Julia set is the boundary of the filled Julia set, that is $J(f) = \partial K(f)$. The complement of the basin of attraction of ∞ is the filled Julia set of f. That is $C_{\infty} \setminus A(\infty) = K(f)$.

3- Some Examples Of Julia Sets

We will put in this section two examples to find the Julia sets :

Example (3-1)

 $J(Q_2)$ is the unit circle of $Q_2(z) = 2z - 2z^2$. The discussion of this example splits into three claims.

Let $D(a,b) = \{ z \in C : |z-a| < b \}$, where $a \in C$ and $0 < b \in R$. Claim 1: Let $z_0 \in D(0,1)$, then $z_0 \in F(Q_2)$. Let $z_0 \in D(0,1)$, that is $|z_0| < 1$. Suppose that $U = D\left(z_0, \frac{1-|z_0|}{2}\right)$. One can see that $U \subseteq D(0,1)$ for all $z \in \overline{U}$ and by using $|z-z_0| \ge |z| - |z_0|$, thus $|z-z_0| < \frac{1-|z_0|}{2}$, hence $|z| - |z_0| \le |z-z_0| < \frac{1-|z_0|}{2}$, therefore $|z| - |z_0| < \frac{1-|z_0|}{2}$, thus $|z| < \frac{1}{2} - \frac{|z_0|}{2} + |z_0|$, hence $|z| < \frac{1}{2} + \frac{|z_0|}{2}$, that is for all $z \in \overline{U}$, $|z| < \frac{1+|z_0|}{2} < 1$. Hence $\overline{U} \subset D(0,1)$. For

all
$$z \in \overline{U}$$
, $Q_2(z) = 2z - 2z^2$, if $|Q_2(z)| = |2z - 2z^2| \le |2z| + |2z^2| \le |2z| + 2|z^2|$

$$\begin{aligned} = 4|z^{2}|, \text{ thus } |Q_{2}^{2}(z)| &= |4z - 12 z^{2} + 16 z^{3} - 8 z^{4}| \qquad \leq |4z| + |12 z^{2}| + |16 z^{3}| + |8 z^{4}| \\ < 16|z^{4}| + 16|z^{4}| + 16|z^{4}| + 16|z^{4}| = 4^{3}|z^{4}|, \end{aligned}$$
hence for *n* -th iterate $|Q_{2}^{n}(z)| \to 0$ as $n \to \infty$. Therefore $\{Q_{2}^{n}\}$ is normal in $D(0,1)$, hence $D(0,1) \subseteq F(Q_{2})$.
Claim2 : If $|z_{0}| > 1$, then $z_{0} \in A_{2}(\infty)$. Let $|z_{0}| > 1$.
 $|Q_{2}(z_{0})| = |2z_{0} - 2z_{0}^{2}| \leq 2|z_{0}| + 2|z_{0}|^{2} < 2|z_{0}^{2}| + 2|z_{0}^{2}| = 4|z_{0}^{3}|, Then \\ |Q_{2}^{2}(z_{0z})| = |4z_{0} - 12z_{0}^{2} + 16z_{0}^{3} - 8z_{0}^{4}| \leq |4z_{0}| + |12z_{0}^{2}| + |16z_{0}^{3}| + |8z_{0}^{4}| \\ < 16|z_{0}^{4}| + 16|z_{0}^{4}| + 16|z_{0}^{4}| + 16|z_{0}^{4}| = 4^{3}|z_{0}^{4}|. Hence, for n-th as $n \to \infty$. Therefore $z_{0} \in A_{2}(\infty)$.
Claim 3: If $|z_{0}| = 1$, then $z_{0} \notin F(Q_{2})$ and $z_{0} \notin A_{2}(\infty)$. Let $|z_{0}| = 1$. Assume $z_{0} \in F(Q_{2})$ so there exists neighborhood $U_{z_{0}}$, which has a subsequence of $\{Q_{2}^{n}\}$, and a map f with $Q_{2}^{n_{k}} \to f$ uniformly on $U_{z_{0}}$. Now for all $\varepsilon > 0$ there is $D(z_{0}, \varepsilon) \subset U_{z_{0}}$, by claim 1, there is $z_{1} \in D(z_{0}, \varepsilon)$ with $|z_{1}| < 1$. It follows that $Q_{2}^{n_{k}} \to 0$ as $n \to \infty$, that is $f(z_{1}) = 0$. Since $|z_{0}| = 1$, $|f(z_{1})| = 1$, which is contradicts that f is analytic map (and therefore is continuous). Therefore $z_{0} \notin F(Q_{2})$. Similarly, we can proof that $z_{0} \notin A_{2}(\infty)$. Therefore $z_{0} \in J(Q_{2})$ for $|z_{0}| = 1$. Hence $J(Q_{2})$ is unit circle.$

Example (3-2)

 $J(Q_4)$ is the line segment [0,1] for $Q_4(z) = 4z - 4z^2$, the discussion of this example splits into three claims.

Claim 1: The set [0,1] is completely invariant. Consider $Q_4(x) = 4x - 4x^2$, thus $Q'_4(x) = 4 - 8x$, hence $Q''_4(x) = -8$, therefore $Q_4(x)$ has maximum value 1 at x = 0.5 since $Q_4(0.5) = 1$. $Q_4(x)$ is increasing on the interval [0.5,1]. $Q_4(x)$ has minimum value of 0 at x = 0 or 1, since $Q_4(0) = 0$ and $Q_4(1) = 0$. Thus $Q_4([0,1]) \subset [0,1]$. Therefore [0,1] is not a subset of $A_4(\infty)$ Claim 2: $W = C_{\infty} \setminus [0,1]$ is $A_4(\infty)$. Let $z_0 \in W$ with $|z_0| > 1$. If

$$\begin{aligned} \left| Q_4(z_0) \right| &= |4 z_0 - 4 z_0^2| \le 4 |z_0| + 4 |z_0^2| < 4 |z_0^2| + 4 |z_0^2| = 8 |z_0^2| \text{,thus} \\ \left| Q_4^2(z_0) \right| &= |16 z_0 - 80 z_0^2 + 128 z_0^3 - 64 z_0^4| \\ &\le |16 z_0| + |80 z_0^2| + |128 z_0^3| + |64 z_0^4| \\ &< 128 |z_0^4| + 128 |z_0^4| + 128 |z_0^4| + 128 |z_0^4| = 8^3 |z_0^4| \text{.Hence} \text{, for } n \text{-th as} \\ n \to \infty \text{ . Therefore } z_0 \in A_4(\infty) \text{ .} \end{aligned}$$
Claim 3 : [0,1] is the Julia set for $Q_4(z) = 4z - 4z^2$, since $[0,1] = \partial A_4(\infty)$. Hence

[0,1] is the Julia set for Q_4 .

4- Properties of Julia Sets

In this section , we introduce some geometric properties :

Proposition (4-1)

Suppose that 1<| λ |<1+ $\sqrt{2}$. Then $J(Q_{\lambda})$ is a simple closed curve .

Proof :

$$\begin{split} Q_{\lambda}(z) &= |\lambda|z - |\lambda|z^{2} \text{, then } |Q'_{\lambda}(z)| = |\lambda - 2\lambda z| < 1 \text{, thus } |\lambda||1 - 2z| < 1 \text{, that} \\ &\text{is } |1 - 2z| < \frac{1}{|\lambda|} \text{, since } |a - b| > |a| - |b| \text{ thus } 1 - 2|z| < \frac{1}{|\lambda|} \text{, hence } |z| > \frac{1}{2} - \frac{1}{2|\lambda|} \text{, or} \\ &|z| < \frac{1}{2} + \frac{1}{2|\lambda|} \text{, thus } |z - 0.5| < \frac{1}{2|\lambda|} \text{, where } \frac{1}{2|\lambda|} \text{ is the radius and 0.5 is the} \\ &\text{center .We note if } 1 < |\lambda| < 1 + \sqrt{2} = 2.4142135 \text{, then } \frac{1}{2|\lambda|} < 0.2071067 \text{, } 0.5 + \frac{1}{2|\lambda|} < 0.7071067 \text{ and } 0.5 - \frac{1}{2|\lambda|} < 0.2928933 \text{.} \end{split}$$
The attractor point is $\frac{|\lambda| - 1}{|\lambda|} < 0.5857864 \text{, while the critical point of } Q_{\lambda} \text{ and the centre of circle is } 0.5 \text{.} |Q_{\lambda}(0.5)| < 0.6035533 \\ &|Q_{\lambda}(0.5857864)| < 0.5857863 \text{ and } |Q_{\lambda}(0.7071067)| < 0.5 \text{ but} \\ &|Q_{\lambda}(0.2928933)| < 0.5 \text{, } |Q_{\lambda}(0.5 + 0.2071067i)| < 0.7071064 \end{split}$

$$|Q_{\lambda}(0.5 - 0.2071067i)| < 0.7071064 \text{ and } |Q_{\lambda}(0)| = 0$$

 $|Q_{\lambda}(2)| < 4.828427 \text{ , also } |Q_{\lambda}(0.1)| < 0.2172792, |Q_{\lambda}(0.8)| < 0.3862741 \text{ .}$

Let Γ_0 be the circle of radius 0.2071067 about 0.5 . Γ_0 contains both the attracting fixed point (0.5857864) and the critical point 0.5 of Q_λ in its interior . Moreover , $|Q'_{\lambda}(z)| > 1$ for z in the exterior of Γ_0 , where 0 is repelling fixed point of Q_{λ} . For each $\theta \in S^1$, we will define a continuous curve $\gamma_{\theta}: [1, \infty) \to C$ having the property that $z(\theta) = \lim_{t \to \infty} \gamma_{\theta}(t)$ is a continuous parameterization of $J(Q_{\lambda})$. To define $z(\theta)$, we first note that the preimage Γ_1 of Γ_0 under Q_{λ} is $Q_{\lambda}(z) = \lambda z - \lambda z^2 = w$, thus $\lambda^2 - \lambda z + w = 0$, hence $z = \frac{1}{2} \pm \sqrt{\frac{1}{4} - \frac{w}{\lambda}}$. The preimage with respect to 0.7071067 and 0.2928933 are $z = 0.5 \pm 0.2071069$, that is with respect to 0.7071067 is z = 0.2928931, also with respect to 0.2928933 is z = 0.7071069 and z = 0.7071069 and z = 0.2928931, while the preimage with respect to the attracting fixed point (0.5857864) is $z = 0.5 \pm 0.0857869$, that is z = 0.5857869 and z = 0.4142131, while the preimage with respect to the critical point (0.5) is z = 0.5003162 and z = 0.4996838, while the preimage for the points with respect to (0.5+0.2071067i) and (0.5-0.2071067i) are $z = 0.5 \pm 0.2071062i$, that is z = 0.5 + 0.2071062i and z = 0.5 - 0.2071062i and z = 0.5 + 0.2071062iand z =0.5-0.2071062i ,each value of the preimages under Q_{λ} have two values, as follows $|Q_{\lambda}(0.7071069)| <$,also $|Q_{\lambda}(0.2928931)| <$ 0.4999997 $0.4999997, |Q_{\lambda}(0.5 - 0.2071062i)| < 0.7071059$ and $|Q_{\lambda}(0.5 + 0.2071062i)| < 0.4999997, |Q_{\lambda}(0.5 - 0.2071062i)| < 0.499997, |Q_{\lambda}(0.5 - 0.2071062i)| < 0.49997, |Q_{\lambda}(0.5 - 0.2071062i)| < 0.4997, |Q_{\lambda}(0.5 -$ 0.7071059, and the value of the preimages under Q_{λ} for the critical point , as follows

 $|Q_{\lambda}(0.5003162)| < 0.603553$, $|Q_{\lambda}(0.4996838)| < 0.6035531$.

While the value of the preimages under Q_{λ} for the attracting fixed point, as follows $|Q_{\lambda}(0.5857869)| < 0.5857862$ and $|Q_{\lambda}(0.4142131)| < 0.5857862$.

Then preimage Γ_1 of Γ_0 under Q_{λ} is a simple closed curve which contains Γ_0 in its interior and which is mapped in a two – to – one formula onto Γ_0 .

The fact that Γ_1 is a simple closed curve follows from the fact that both the critical point (0.5) and its image lie inside Γ_0 . Hence the curves Γ_0 and Γ_1 bound an annular region A_1 (A_1 may be regarded as a fundamental domain for the attracting fixed point for Q_{λ}) Let W be the standard annulus defined by $W = \{ r e^{i\theta} : 1 \le r \le 2, \theta$ arbitrary $\}$. Choose diffeomorphism $\varphi : W \to A_1$ which maps the inner and outer boundaries of W to the corresponding boundaries of A_1 . See figure (1). This allows us to define the initial segment of $\gamma_{\theta} : [1,2] \to C$ by $\gamma_{\theta}(r) = \varphi(r e^{i\theta})$. That is, γ_{θ} is the image of a ray in W under φ .

Fig.1

For $r \ge 2$, may extend γ_{θ} as follows, since preimage Γ_1 of Γ_0 under Q_{λ} and the critical point in interior Γ_0 , thus Q_{λ} has no critical points in the exterior of Γ_1 . The preimages Γ_2 of Γ_1 under Q_{λ} are

 $z = 0.5 \pm 0.2071072$, that is z = 0.7071072 and z = 0.2928928 with respect to 0.7071069, also have the same preimages with respect to 0.2928931, while the preimages of critical points (0.5003162) and (0.4996838) are $z = 0.5 \pm 0.0004472$

that is z = 0.5004472 and z = 0.4995528 with respect to 0.5003162 and also for while the for the attracting fixed 0.4996838, preimages points are $z = 0.5 \pm 0.0857875$ that is z = 0.5857875and z = 0.4142125for (0.5857869) and also for (0.4142131), while the preimages of points (0.5+0.2071062i) $z = 0.5 \pm 0.2071057 i$ are and (0.5)-0.2071062i) that is z = 0.5 + 0.2071057 i and z = 0.5 - 0.2071057 i for (0.5+0.2071062i) and also for (0.5-0.2071062i), each value of the preimages under Q_{λ} have four values, as follows $|Q_{\lambda}(0.7071072)| < 0.4999995$ and $|Q_{\lambda}(0.2928928)| < 0.4999995$ $|Q_{\lambda}(0.5 - 0.2071057i)| < 0.7071055$, and $|Q_{\lambda}(0.5 + 0.2071057i)| < 0.7071055$, the value of the preimages under Q_λ for the critical point , as follows $|Q_{\lambda}(0.5004472)| < 0.6035528$ and $|Q_{\lambda}(0.4995528)| < 0.6035528$.

While the value of the preimages under Q_{λ} for the attracting fixed point, as follows $|Q_{\lambda}(0.5857875)| < 0.5857859 \text{ and } |Q_{\lambda}(0.4142125)| < 0.5857859$.

Hence there is a simple closed curve Γ_2 which is mapped in a two – to – one formula onto Γ_1 . Moreover, Q_λ maps the annular region A_2 between Γ_1 and Γ_2 onto A_1 , again in a two –to-one formula. Thus, the preimage of any γ_{θ} in A_1 is a pair of non – intersection curves in A_2 , thus every point $z \in A_2$, imply $f(z) \in A_1$. There is a unique such curve which meets the inner boundary Γ_1 . Hence, for each θ , there is a unique curve in A_2 which contains the point $\gamma_{\theta}(2)$, that is $\gamma_{\theta}(1)$ is boundary of Γ_0 and $\gamma_{\theta}(2)$ is boundary of Γ_1 and $\gamma_{\theta}(3)$ is boundary of Γ_2 . We may thus sew together these two curves in the obvious way at this point, producing a single curve defined on the interval [1,3]. Continuing in this formula, we may extend each γ_{θ} over the entire interval $[0, \infty)$. Now recall that $|Q'_{\lambda}(z)| > k > 1$ for positive integer kprovided z lies in the exterior of Γ_1 . Hence the length of each extension of γ_{θ} decreases geometrically. It follows that $\gamma_{\theta}(t)$ converges uniformly in θ and that $\lim_{t \to \infty} \gamma_{\theta}(t) = z(\theta)$, since $\lim_{t \to \infty} \gamma_{\theta}(t)$ is continuous, thus $z(\theta)$ is continuous and is a unique point in C for each θ . We claim that $z(\theta)$ parameterizes a simple closed curve in *C*. To show that the image curve is simple, we must prove that if $z(\theta_1) = z(\theta_2)$, then $z(\theta) = z(\theta_1)$ for all θ with $\theta_1 \le \theta \le \theta_2$, see fig. (3). $z(\theta)$ is a point by substituting $\theta = \theta_1$. However, if this was not the case, the portions of the curves Γ_1 , $\gamma_{\theta_1}(t)$ and $\gamma_{\theta_2}(t)$ would bound a simply connected region containing each $z(\theta)$ in its interior. This implies that there is a neighborhood of $z(\theta)$ whose images under Q_{λ}^n remains bounded, thus $z(\theta)$ is attracting but not repelling.

Hence $z(\theta) \notin J(Q_{\lambda})$.But this is impossible. Therefore $J(Q_{\lambda})$ is simple closed curve.

Fig.2 (a) & (b) the proof of the proposition (for 1< $\left|\lambda\right|$ < 1+ $\sqrt{2}$)

Proposition (4-2)

Suppose λ is a complex number and $1 < |\lambda| < 1 + \sqrt{2}$. Then $J(Q_{\lambda})$ is a simple closed curve such that Julia set which contains no smooth arcs. Proof:

Suppose that λ is complex, that is $\lambda = \lambda_1 + \lambda_2 i$ and satisfies $1 < |\lambda| < 1 + \sqrt{2}$. If Q_{λ} has repelling fixed point at $z_0 = 0$. Then $|Q'_{\lambda}(0)| = |\lambda| - 2|\lambda|(0) = |\lambda|$, if $\lambda_1 \neq 0$ then λ is not pure imaginary, by properties of complex analysis, thus z_0 does not lie in a smooth arc in $z(\theta)$. For if this were the case, then the image of $z(\theta)$ would also be a smooth arc in $J(Q_{\lambda})$ passing through z_0 . Since $Q'_{\lambda}(z_0)$ is complex, the tangents to these two curves $z(\theta_1)$ and $z(\theta_2)$ would not be parallel. Therefore $z(\theta)$ would not be simple at z_0 , that is $z(\theta_1) \neq z(\theta_2)$. The preimage of z_0 are dense in $J(Q_{\lambda})$. It follows that $J(Q_{\lambda})$ contains no smooth arcs.

Example (4-3)

 $J(Q_\lambda)$ is infinitely many different simple closed curves for $\lambda=1\mp\sqrt{5}$.

First , let $\lambda = 1 + \sqrt{5}$. We now turn to the case of an attracting periodic rather point $Q_{\lambda}^{2}(z) = z$, thus $Q_{\lambda}^{2}(z) - z = 0$, fixed than hence $\lambda^2 z^2 - z(\lambda^2 + \lambda) + (\lambda + 1) = 0$, therefore $z = \frac{\lambda + 1}{2\lambda} \mp \frac{1}{2\lambda} \sqrt{\lambda^2 - 2\lambda - 3}$, thus and z = 0.809017 , which $Q_{\lambda}(0.5) = 0.809017$ z = 0.5and $Q_{\lambda}(0.809017) = 0.5$. Also $Q'_{\lambda}(z) = \lambda - 2\lambda z$, thus $|Q'_{\lambda}(0.5)| = 0 < 1$ is an attracting fixed point .Therefore 0.5 and 0.809017 lie on an attracting periodic of period 2 .The dynamics of Q_λ on the real line relatively straight forward , there are two repelling fixed points at 0 and 0.6909829 , since Q_λ as two repelling fixed point z=0or $z = \frac{\lambda - 1}{2} = 0.6909829$, that is $|Q'_{\lambda}(0)| > 1$ and $|Q'_{\lambda}(0.699829)| > 1$. The fixed point at 0.6909829 is the dividing point between the basin of attraction of 0.5 and 0.809017. By proposition (4-1), one may show that there are two simple closed curves ${\gamma}_0$ and ${\gamma}_1$ in $J(Q_\lambda)$ which surround 0.5 and 0.809017 respectively .The curves ${\gamma}_0$ and γ_1 meet at fixed point 0.6909829 . There is much more $J(Q_\lambda)$ however . The basin of attraction of 0.5 is not completely invariant because one preimage of the interior of γ_0 is γ_1 but there is another surrounding the other preimage of 0.5 is 0.190983 , since $Q_{\lambda}(z) = 0.5$, thus $3.2360679z^2 - 3.2360679z + 0.5 = 0$, hence z = 0.809017 and z = 0.190983. Therefore $Q_{\lambda}(0.190983) = 0.5$. Hence there is a third simple closed curve in $J(Q_\lambda)$ surrounding 0.190983 as well . Now both 0.190983 and 0.809017 must have a pair of distinct preimages , each is surrounded by a simple closed curve in $J(Q_{\lambda})$. Continuing in this formula , we get that the Julia set of Q_{λ} must contain infinitely many different simple closed curves .In the same way if $\lambda = 1 - \sqrt{5}$ then z = 0.4999998 and z = -0.309017, $Q_{\lambda}(0.4999998) = -0.309017$ and $Q_{\lambda}(-.0309017) = 0.4999998$, also $|Q'_{\lambda}(0.4999998)| < 1$, thus -0.309017 and 0.4999998 lie on an attracting periodic of period 2, also has two repelling at z = 0 and z = 1.809017. Hence 0 is the dividing point between the basin of attraction of -0.309017 and 0.4999998 and 0.4999998.

which surrounds 0.4999998 and -0.309017 respectively .So that if $-1.2360679 z^2 + 1.2360679 z + 0.999998 = 0$, then z = -0.309017 and z = 1.3091017, also $Q_{\lambda}(1.309017) = 0.4999998$. Hence there is third simple a closed curve in $J(Q_{\lambda})$ surrounding 1.309017. See fig. (3).

Fig.3 Julia set for $\lambda = 1 \pm \sqrt{5}$.

References

[1] Devaney, R.L, An Introduction to Chaotic Dynamical Systems, second edition, Addison-Weseley, 1989.

[2] Falconer, K.J., Fractal Geometry, John Wiley & Sons Ltd., England, 1990 [3]
Jarvi, P., Not all Julia sets are quasi-self-similar, Amer. Math. Soc., Vol.125 (1997) pp
835-837.

[4] Julia ,G. , Me`moiré sur I' ite`ration des functions rationelles , J. Math. 8(1918) pp 47-245 .

[5] Przytycki,F. and Levin , G. ,When do two rational functions have the same Julia set , Amer. Math. Soc. , Vol .125 (1997) pp 2179-2190 .

[6] Schmidt ,W. and Steinmetz , N., The Polynomials associated with a Julia set , Universitat Dortmund , Institut fur mathematik ,Dortmund ,Germany , 1980 .

[7] Devaney ,R. L., Cantor and Sierpinski , Julia and Fatou :Complex Topology Meets Complex Dynamics , (2003) , (to apper).

[8] Erat, M., Iteration of rational maps , pl.physik . tu – berlin .