

On n-norms of Complex Hilbert Spaces

Mayada Ali Kareem¹, Hawraa Abbas Almurieb¹, Rehab Amer Kamel¹, Ahmed Hadi Hussain²

¹Department of Mathematics College of Education for Pure Sciences University of Babylon Hillah, Iraq

²Department of Automobile Engineering College of Engineering Al-Musayab University of Babylon Babil, Iraq

email: pure.meyada.ali@uobabylon.edu.iq, pure.hawraa.abbas@uobabylon.edu.iq, pure.rehab.amer@uobabylon.edu.iq, met.ahmed.hadi@uobabylon.edu.iq

(Received March 10, 2022, Accepted April 26, 2022)

Abstract

Researchers have defined and studied many different norms their applications in different areas. We study the n-norm over the Complex Vector Space (CVS) and explain the relation between some different inequalities of n-norms in a Complex Hilbert Spaces (CHS). Moreover, we discuss bounded n-complex linear functional normed spaces and then give some related results and generalizations.

1 Introduction

The norm on a complex space is well known and has been studied extensively (see, for instance, [1], [3], and [4]). A norm is a nonnegative complex-valued

Key words and phrases: Norm, n—norm, Complex Hilbert Space. AMS (MOS) Subject Classifications: 30E10, 41A65, 46B15. ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net

function on the CVS X that satisfies scaling, triangle inequality and zero only at the origin. For example, if $\mathbf{x} = (\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n})$ is a vector in C^n , one of the suitable norms is $\|x\| = \sqrt{\sum_{k=1}^n |x_k|}$. Note that the coordinates of \mathbf{x} all happen to be complex numbers. Then the above definition agrees with the norm for CVSs. Moreover, a mapping $\|., ..., \|: X^n \to C$ is the so called n-norm on X, if it satisfies; permutationally invariant, scaling, zero only iff its components are linearly independent, and finally triangle inequality under the first component, whereas $(X, \|., ..., \|)$ is called an n-normed space. In [2] the complex inner product of two vectors \mathbf{x} and \mathbf{y} in standard form is defined by $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x_1}\overline{\mathbf{y_1}} + \cdots + \mathbf{x_n}\overline{\mathbf{y_n}}$ The relation between the norm and the inner product of $\mathbf{x} = (\mathbf{x_1}, ..., \mathbf{x_n})$ is given by $\|\mathbf{x}\| = \sqrt{|\mathbf{x_1}| + \cdots + |\mathbf{x_n}|} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ Similarly, we define an inner-product $\langle .,. \rangle$ in the standard n-norm on X form through $\|x_1, ..., x_n\|_{S^*} = \sqrt{|\det(\langle x_i, x_j \rangle)|}$, so under the conditions of the inner product, we get

$$\|\alpha x_1, \dots, x_n\|_{S^{*'}} = |\alpha| \|x_1, \dots, x_n\|_{S^*} = |\alpha| \sqrt{|\det(\langle x_i, x_j \rangle)|}$$

Moreover, the above definition denotes the volume of the parallelepiped spanned of dimension n through $x_1, \ldots, x_n \in X$. Since X is a CVS, we write

$$\|\alpha x_1, \dots, x_n\|_{G^*} = \sup_{\|g_i\| \le 1, g_i \in \overline{X^*}} \begin{vmatrix} g_1(\alpha x_1) & \cdots & g_n(\alpha x_1) \\ \vdots & \ddots & \vdots \\ g_1(x_n) & \cdots & g_1(\alpha x_n) \end{vmatrix} = |\overline{\alpha}| \sup_{\|g_i\| \le 1, g_i \in \overline{X^*}} \det [g_i(x_i)]$$

The conjugate space X^* can be specified at the functional $g: X \to C$ of all additive complex-valued, where $g(\alpha x) = \overline{\alpha}g(x)$. In addition, $\overline{X^*}$ is a complex conjugate of the dual space such that $\Theta_{\langle .,.\rangle}: X \to \overline{X^*}$ The n-normed space was first studied by Gahler [3] and [4] in the sixties then extensively by Gunawan [2]. In the next section, we give diverse formulas in a CHS. Many researchers gave important results into CVSs (see [5], for example).

2 n-norms in CHSs

Let X be a CHS. Using the Riesz Representation Theorem, each $g \in \overline{X^*}$ can be specified through $z \in X$ such that $g(x) = \langle x, z \rangle$, for all $x \in X$. Hence, using generalized Cauchy-Schwarz and Hadamard's inequalities [6], [7], we get

$$\|\alpha x_1, \dots, x_n\|_{G^*} = |\overline{\alpha}| \sup_{z_i \in X, \|z_i\| \le 1} \det [\langle x_k, z_i \rangle]$$

$$\leq |\overline{\alpha}| \sup_{z_i \in X, ||z_i|| \leq 1} ||x_1, \dots, x_n||_{S^{*'}} ||z_1, \dots, z_n||_{S^{*'}} \leq ||x_1, \dots, x_n||_{S^{*'}} ||z_1|| \dots ||z_n||$$

We conclude that $\|\alpha x_1, \dots, x_n\|_{G^*} \leq \|\alpha x_1, \dots, x_n\|_{S^{*'}}$.

Conversely, suppose $\alpha x_1, \ldots, x_n$ are linearly independent. The vectors obtained from $\alpha x_1, \ldots, x_n$ equal to $\alpha x_1^*, \ldots, x_n^*$ and by the Gram-Schmidt orthogonalization, we get $\|\alpha x_1, \ldots, x_n\|_{S^{*'}} = |\alpha| \|x_1^*\|, \ldots, \|x_n^*\|$.

If $y_i = \frac{1}{\|x_i^*\|}$, $i = 1, \ldots, n$, then we can use determinants as follows:

$$|\overline{\alpha}| \begin{vmatrix} \langle x_1, z_1 \rangle & \cdots & \langle x_1, z_n \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, z_1 \rangle & \cdots & \langle x_n, z_n \rangle \end{vmatrix} = |\overline{\alpha}| \frac{1}{\|x_1^*\| \dots \|x_n^*\|} \begin{vmatrix} \langle x_1^*, x_1^* \rangle & \cdots & \langle x_1^*, x_n^* \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n^*, x_1^* \rangle & \cdots & \langle x_n^*, x_n^* \rangle \end{vmatrix} = |\overline{\alpha}| \|x_1\|^* \dots \|x_n^*\|$$

Hence,

$$\|\alpha x_1, \dots, x_n\|_{G^*} \ge \|\alpha x_1, \dots, x_n\|_{S^{*'}}$$

Suppose that X is a separable space and let $\{e_1, e_2, \dots\}$ be a complete orthonormal subset of X. Subsequently, $\forall x \in X$, we can specify the the sequence $(\langle x, e_k \rangle) \in l^2$. As shown, [5] determines an n-norm on X through the following formula:

$$\|\alpha x_1, \dots, x_n\|_2 = \left[|\alpha| \frac{1}{n!} \sum_{k_1} \dots \sum_{k_n} |\det [\lambda_{ik_j}]|^2 \right]^{\frac{1}{2}},$$

where $\lambda_{ik} = \langle x_1, e_k \rangle$.

Theorem 2.1. For any separable Hilbert space X, $\|\alpha x_1, \ldots, x_n\|_{G^*}$, $\|\alpha x_1, \ldots, x_n\|_{S^{*'}}$ and $\|\alpha x_1, \ldots, x_n\|_2$ are identical.

In the following, we give other formulas of n-norms.

Theorem 2.2. The function

$$\|\alpha x_1, \dots, x_n\|_{E^*} = |\alpha| \sup_{z_1, \dots, z_n, \|z_1, \dots, z_n\|_{S^*} \le 1} \begin{vmatrix} \langle x_1, z_1 \rangle & \cdots & \langle x_1, z_n \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, z_1 \rangle & \cdots & \langle x_n, z_n \rangle \end{vmatrix}$$

defines an n-norm over X.

Proof.

If $\|\alpha x_1, \ldots, x_n\|_{E^*} = 0$, then the rows of $\langle x_i, z_i \rangle$ are linearly dependent vectors $\forall z_1, \ldots, z_n \in X$ with $\|\alpha x_1, \ldots, x_n\|_{S^*} \leq 1$. On the contrary, we get

 $\|\alpha x_1, \dots, x_n\|_{E^*} = 0$ for linearly dependent vectors. Using determinants, we get an invariance of $\|\alpha x_1, \dots, x_n\|_{E^*}$ under permutation. Moreover, we obtain

$$\|\alpha\beta x_1,\ldots,x_n\|_{E^*} = |\alpha\beta|\|x_1,\ldots,x_n\|_{E^*}, \forall \alpha,\beta \in C$$

Finally, for arbitrary elements $x, x', x_2, x_3, x_n \in X$, we get

$$\begin{vmatrix} \langle x + x', z_1 \rangle & \cdots & \langle x + x', z_n \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, z_1 \rangle & \cdots & \langle x_n, z_n \rangle \end{vmatrix} = \begin{vmatrix} \langle x, z_1 \rangle & \cdots & \langle x, z_n \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, z_1 \rangle & \cdots & \langle x_n, z_n \rangle \end{vmatrix} + \begin{vmatrix} \langle x', z_1 \rangle & \cdots & \langle x', z_n \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, z_1 \rangle & \cdots & \langle x_n, z_n \rangle \end{vmatrix}$$

By taking the supermums for the above inequalities, we get

$$\|\alpha(x+x'),\ldots,x_n\|_{E^*} \leq \|\alpha x,\ldots,x_n\|_{E^*} + \|\alpha x',\ldots,x_n\|_{E^*}$$

As a result, we get

Theorem 2.3. The formulas $\|\alpha x_1, \ldots, x_n\|_{E^*}$ and $\|\alpha x_1, \ldots, x_n\|_{G^*}$ are identical.

Proof.

Suppose $z_1, ..., z_n$, where $||z_1, ..., z_n||_{S^{*'}} \le ||z_1||, ..., ||z_n||$, we obtain, $||z_1, ..., z_n||_{S^{*'}} \le 1$, j = 1, ..., n. Subsequently $||x_1, ..., x_n||_{G^*} \le ||x_1, ..., x_n||_{E^*}$.

To prove the second part if $||z_1, ..., z_n||_{S^{*'}} \le 1$, then by the generalized

To prove the second part, if $||z_1, \ldots, z_n||_{S^{*'}} \leq 1$, then, by the generalized Cauchy-Schwarz inequality, we get

$$|\alpha| |\langle x_k, z_i \rangle| \le \sqrt{|\langle x_k, x_i \rangle|} \sqrt{|\langle z_k, z_i \rangle|} = |\alpha| ||x_1, \dots, x_n||_{S^{*'}} ||z_1, \dots, z_n||_{S^{*'}}$$

$$\le |\alpha| ||x_1, \dots, x_n||_{S^{*'}} = |\alpha| ||x_1, \dots, x_n||_{G^*}$$

So, $\|\alpha x_1, ..., x_n\|_{E^*} \le \|\alpha x_1, ..., x_n\|_{G^*} \square$

Corollary 2.4. When X is a separable CHS, the n-normed spaces $(X, \|., ..., .\|_{G^*})$, $(X, \|., ..., .\|_{G^*})$ are identical.

In $(X, \|.\|)$, we define a norm on the complex conjugate of the dual space X^* using $\|g\| = \sup_{\|x\| \le 1} |g(x)|, g \in \overline{X^*}$.

Theorem 2.5. For an $n-normed\ space\ (X,\|.,...,\|')\ ,\ \|.,...,\|':\overline{(X^*)^n}\to C\ presented\ by$

$$\|\alpha g_1, \dots, g_n\|' = \sup_{x_i \in X, \|x_1, \dots, x_n\| \le 1} \begin{vmatrix} g_1(\alpha x_1) & \dots & g_n(\alpha x_n) \\ \vdots & \ddots & \vdots \\ g_1(x_n) & \dots & g_n(x_n) \end{vmatrix}$$

shown an n-norm on $\overline{X^*}$

3 Bounded n-linear Functionals

Consider a CVS X with an n-norm $\|., ..., .\|$ on X. The functional $G: X^n \to C$ is called an n-linear functional on a CVS X. G is bounded if $|G(\alpha x_1,\ldots,x_n)| \leq h||\alpha x_1,\ldots,x_n||$, for a constant $h,(x_1,\ldots,x_n) \in X^n$, $\alpha \in C$. If G is bounded, then

$$||G|| = \sup_{\|x_1, \dots, x_n\| \neq 0} \frac{|G(\alpha x_1, \dots, x_n)|}{\|\alpha x_1, \dots, x_n\|} \text{ or } ||G|| = \sup_{\|x_1, \dots, x_n\| = 1} |G(\alpha x_1, \dots, x_n)|$$

Let Γ denote the set of all bounded n-linear functionals. In what follows, we show two alternate formulas for ||G||:

Theorem 3.1. Assume that $G \in \Gamma$ on C. Then

$$||G|| = \inf_{h} \{ |G(\alpha x_1, ..., x_n)| \} \le h ||\alpha x_1, ..., x_n|| = \sup_{||x_1, ..., x_n|| \le 1} |G(\alpha x_1, ..., x_n)|,$$

where
$$(x_1, \ldots, x_n) \in X^n, \alpha \in C$$

Proof. Suppose that $H = \{h : |G(\alpha x_1, ..., x_n)| \le h \|\alpha x_1, ..., x_n\|, (x_1, ..., x_n) \in A\}$

 $X^n, \alpha \in C$ }. It is clear that $\|G\| \in H$ and so $\inf H \leq \|G\|$. On the other hand, $\forall h \in H$, we have $\frac{|G(\alpha x_1, ..., x_n)|}{\|\alpha x_1, ..., x_n\|} \leq |\alpha| h$ when $\|x_1, ..., x_n\| \neq \|G\|$ 0; therefore, $||G|| \leq |\alpha|h$ and this is true $\forall h \in H$. We have $||G|| \leq \inf H$. So $||G|| = \inf H$. Next, if $||x_1, ..., x_n|| \le 1$, then $|G(\alpha x_1, ..., x_n)| \le |\alpha| ||G|| ||x_1, ..., x_n|| \le 1$

Consequently, $||G|| = \sup_{||x_1,...,x_n|| \le 1} |G(\alpha x_1,...,x_n)| \square$.

As an example, consider the n-normed space $(C^n, \|., ..., ...\|_{S^{*'}})$ with basis

$$\{e_1,...,e_n\}$$
. Define G by $G(\alpha x_1,...,x_n) = |\alpha| \begin{vmatrix} \lambda_{11} & \cdots & \lambda_{1n} \\ \vdots & \ddots & \vdots \\ \lambda_{n1} & \cdots & \lambda_{nn} \end{vmatrix} = |\alpha| \det[\lambda_{ij}],$ where $x_k = \sum_{i=1}^n e_i, k = 1,...,n$. Then, $G \in \Gamma$ is on C^n , $||G|| = |\alpha|$.

Theorem 3.2. Suppose that $(X, \langle ., . \rangle)$ be a CVS, with an $n-norm \parallel ., ..., . \parallel_{S^{*'}}$ in standard form. For installed elements $z_1,...,z_n \in X$, we define G on X^n by $G(\alpha x_1,\ldots,x_n)=\det[\langle \alpha x_k,z_i\rangle]$. Then $G\in\Gamma$ on X, and $\|G\|=$ $\|\alpha\|\|z_1,\ldots,z_n\|_{S^{*'}}$

Proof. Using Theorem 3.1, we get

$$\|G\| = \sup_{\|x_1,\dots,x_n\|_{S^{*'}} \le 1} |\det\left[\langle \alpha x_k, z_i \rangle\right]|$$

By the generalized Cauchy-Schwarz inequality, we have

$$||G|| \le \sup_{\|x_1,...,x_n\|_{S^{*'}} \le 1} ||\alpha x_1,...,x_n||_{S^{*'}} ||z_1,...,z_n||_{S^{*'}} \le |\alpha|||z_1,...,z_n||_{S^{*'}}$$

Assume
$$x_i = \frac{z_i}{\|z_1,...,z_n\|_{S^{*'}}^{\frac{1}{n}}}$$
. Then we obtain $\|G\| = |\alpha| \|z_1,...,z_n\|_{S^{*'}} \square$.

Any member in Γ on the space L_p , $1 \le p \le \infty$,

$$\|\alpha x_1, ..., x_n\|_p = \left[|\alpha| \frac{1}{n!} \sum_{k_1} \cdots \sum_{k_n} \left| \det \left[x_{ik_j} \right] \right|^p \right]^{\frac{1}{p}}.$$

4 Conclusions

In this paper, we studied CHS with some types of n-norms there and the relationships among them. Also, we presented the concept of a bounded n-linear functional with some related results.

References

- [1] Sh. Axler, Linear Algbra Done Right, 3rd Edition, Springer, 2015.
- [2] H. Gunawan, The space of p-summable sequences and its natural n-norm, Bull. Austral. Math. **64**, (2001), 137–147.
- [3] S. Gahler, Linear 2—normierte raume, Math. Nach. 28, (1964),1–43.
- [4] S. Gahler, Untersuchungen uber verallgemeinerte m-metrische raumeIII, Math. Nach., **40**, (1970), 23–36.
- [5] S. M. Gozali, H. Gunawan, O. Neswan, On n-norms and Bounded n-linear Functionals, A Hilbert space, Annals of Functional Analysis, (2010),73-79.
- [6] S. Kurepa, On the Buniakowsky-Cauchy-Schwarz inequality, Glas. Math. III, Ser. 1, **21**, (1966), 147–158.
- [7] F. R. Gantmacher, The Theory of Matrices, Chelsea Publishing Co., 1, (2000),252–253.