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Abstract

Researchers have defined and studied many different norms their
applications in different areas. We study the n—norm over the Com-
plex Vector Space (CVS) and explain the relation between some dif-
ferent inequalities of n—norms in a Complex Hilbert Spaces (CHS).
Moreover, we discuss bounded n—complex linear functional normed
spaces and then give some related results and generalizations.

1 Introduction

The norm on a complex space is well known and has been studied extensively
(see, for instance, [1], [3], and [4]). A norm is a nonnegative complex-valued
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function on the CVS X that satisfies scaling, triangle inequality and zero only
at the origin. For example, if x = (X1, X3, ..., X,) is a vector in C", one of the
suitable norms is ||z|| = v/>_,_; |zx|- Note that the coordinates of x all hap-
pen to be complex numbers. Then the above definition agrees with the norm
for CVSs. Moreover, a mapping ||.,...,.|| : X™ — C'is the so called n—norm
on X, if it satisfies; permutationally invariant, scaling, zero only iff its com-
ponents are linearly independent, and finally triangle inequality under the
first component, whereas (X, ||.,...,.||) is called an n—normed space. In [2]
the complex inner product of two vectors x and y in standard form is defined
by (X,y) = X1¥1 + - - + Xn¥n The relation between the norm and the inner
product of X = (X1, ...,Xn) is given by [|x|| = /[x1] + -+ + [xn] = V/(x, %)
Similarly , we define an inner-product (.,.) in the standard n—norm on X
form through ||z1,. .., z,|ls» = /| det ({z;, x;))], so under the conditions of
the inner product, we get

g = \oz|\/\ det ((z;, z;))|

Moreover, the above definition denotes the volume of the paralelepiped spanned

laxy, ..., Tollgw = |e||z1, .., 2]

of dimension n through z,...,z, € X . Since X is a CVS, we write
gi(azy) - go(ax)
lazy,...,Zulle- = sup : : =la] sup  det[g;(x)]
llgill<1,g:€ X+ gi(z,) - qilaxy) llgill<l.g;€X*

The conjugate space X* can be specified at the functional g : X — C of all
additive complex-valued, where g(ax) = @g(x). In addition, X* is a complex
conjugate of the dual space such that © y: X — X* The n—normed space
was first studied by Gahler [3] and [4] in the sixties then extensively by
Gunawan [2]. In the next section, we give diverse formulas in a CHS. Many
researchers gave important results into CVSs (see [5], for example).

2 n—norms in CHSs

Let X be a CHS. Using the Riesz Representation Theorem, each g € X* can
be specified through z € X such that g(z) = (z,2), for all z € X. Hence,
using generalized Cauchy-Schwarz and Hadamard’s inequalities [6], [7], we
get

o =@l sup det[(xg, z)]
zi€X, ||z <1

|z, ..., x,]



On n—norms of Complex Hilbert Spaces 1323

<la| sup |1, . zallgllzrs s 2l Szt @nllge |2l - 2]
z€X, ||z |I<1
We conclude that ||axy,. .., z,||¢ < [Jaxy, ... 2, e
Conversely, suppose azy,...,x, are linearly independent. The vectors ob-
tained from axy,...,z, equal to azj,...,x} and by the Gram-Schmidt or-
thogonalization, we get ||axy, ..., x| g = ||||z5]l,- .-, |25
Ify, = IIwI’-‘II ,i=1,...,n, then we can use determinants as follows:
K2

<$1>Zl> <£L’1,Zn> 1 <£L’>{,I’T> <ZL’>{,ZL':L>
al : : = Wm : = [al|z]". ..

<In7 Zl) e <xm Zn) ' " <I;kw ID e <£L';, 1’;)
Hence,

lazy, ..., zullee > |lax, ..., Tnl|gv

Suppose that X is a separable space and let {ej,es,...} be a complete or-
thonormal subset of X. Subsequently, Vo € X, we can specify the the se-
quence ({x,ex)) € [*. As shown, [5] determines an n—norm on X through
the following formula:

1
2

1
laws, - sanlla = flal— > e D ldet PP
kn

k1

where A\, = (z1, €x).

Theorem 2.1. For any separable Hilbert space X, ||axy, ..., x,||g«, ||ax, ..., x|

and ||axy, ..., x,||o are identical.
In the following, we give other formulas of n—norms.

Theorem 2.2. The function

(T1,21) -+ (@1, 2n)

B = |a sup
21,002, 2150020 | 55 <1 <

|y, ...z,

Zlfn,21> e <znazn>

defines an n—norm over X.

Proof.
If ||axy,...,z,||p- = 0, then the rows of (z;, z;) are linearly dependent vec-
tors Vz1,...2, € X with |lazy,...,2,]|s+ < 1. On the contrary, we get

S

al
n
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oz, ..., x,]|g= = 0 for linearly dependent vectors. Using determinants,
we get an invariance of ||y, ..., z,||g+ under permutation. Moreover, we
obtain

|laBzy, ..., x.)|lg- = |af|||x1, ..., Tul|lgs, Vo, B € C

Finally, for arbitrary elements z, 2, z, 3, , z, € X, we get

(x+a,2) - (x4, 2) (r,z1) - {x,2pn) (', 2) - (&, z)
) ) : _ : : T )
(T, 21) -+ (Tn, 2n) (Xp,z1) o (xpyzn)| [(Xn,21) o (X, 20)

By taking the supermums for the above inequalities, we get

||o(z + 3:/), o Tpller <oz, .. x|+ Hozx/, oy T || g O

As a result, we get
Theorem 2.3. The formulas ||z, ..., x,|| g and ||axy, . .., x|+ are iden-
tical.

Proof.
Suppose 21, . . ., zn, Where [[z1, ..., zullge < [|21]]s - -+, [|2a]], we obtain, [|21, .. ., 2, g <
1,7 =1,...,n. Subsequently ||z1,...,2,|lc+ < [|z1,.. ., 20| 5>
To prove the second part, if ||2,..., 2z,]|g» < 1, then, by the generalized
Cauchy-Schwarz inequality, we get

| |(r, 23| <V aws 20) [V (2, 20| = e[l zallgallz1s o 2l g

<la|||lz1,...,xnllge = |a]||21, ..., Tnl| e

So, |laxy, ..., zpllp <oz, ..., z,|e O
Corollary 2.4. When X is a separable CHS, the n—normed spaces (X, ||, ..., . ||a), (X, |-, -+

and (X, ., ..,

g+) are identical.

In (X, ||.]|), we define a norm on the complex conjugate of the dual space
X* using [|g]| = sup, <1 l9(7)], g € X*.

Theorem 2.5. For ann—normed space (X, ||.,...,.[[), |-, : (X*)» =
C presented by

gi(axy) -+ gulam,)

lag, ..., g.) = sup
i €X,||z1,.,2n]|<1

G(e) e galen)

shown an n—norm on X*
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3 Bounded n—linear Functionals

Consider a CVS X with an n—norm ||.,...,.|| on X. The functional
G: X™ — (' is called an n-linear functional on a CVS X. G is bounded
if |G(azy,...,z,)|] < hllaxy,...,x,|, for a constant h, (xq,...,x,) € X",
a € C. If G is bounded , then
16l = sup  (GOTL Tl e G (Glag, 2|
|Z1,m. s || £0 ||Oé931, e >93n|| |1, zn||=1

Let I' denote the set of all bounded n—linear functionals. In what follows,
we show two alternate formulas for ||G]|:

Theorem 3.1. Assume that G € I" on C. Then

HGH :Hgf{|G(OéLU1,,Z1}'n)|} S hHOé.flfl,...,I'nH = sup ‘G(axlv""vxn>|7

where(zy,...,x,) € X" a € C

Proof. Suppose that H = {h : |G(azy, ....;x,)| < hllazy, ..., x|, (21, ...y zn) €
X" o € C}. It is clear that |G| € H and so inf H < ||G]| .
On the other hand, Yh € H, we have H < |a|lh when ||xq, ..., z,|| #

0; therefore, |G| < |a|h and this is true VA € H. We have |G| < inf H. So
|G|| = inf H. Next, if |21, ..., z,|| < 1, then |G(axy, ..., z,)| < |a|||G|]|z1, .oy 2] <

,,,,, xn”Sl‘G(OzZL’l, ...,xn)|D.

As an example, consider the n—normed space (C™,||.,...,.
Al Al

{e1,...,en}. Define G by G(azxy,...,x,) = |af| . | = |afdet[\;],
Ml o A

where z, =Y " e;,k=1,...,n. Then, G € 'is on C", ||G|| = |a|.

o) With basis

Theorem 3.2. Suppose that (X, (.,.)) be a CVS, with an n—norm ||.,. .., .| g«
in standard form. For installed elements z,....,z, € X, we define G on
X" by Glaxy,...,x,) = det[{axy, z;)]. Then G € T on X, and |G| =
|Oz|||2’1, R ZTLHS*’

Proof. Using Theorem 3.1, we get

1G] = ~ sup |det [{axy, z)]]

le ----- wnl‘s*/gl
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By the generalized Cauchy-Schwarz inequality, we have

|G| < sup oz, ..., nllger |21, s 20l g < le]]| 21, ey 20 g
21, o <1
Assume x; = —=——. Then we obtain |G| = |al||z1, ..., 2n]| g O.

Any member in I' on the space L,,1 < p < oo,

L A

1
ey, ..., 2|, = |a\ﬁZ~-~Z‘det[xiijp
Tk kn

4 Conclusions

In this paper, we studied CHS with some types of n—norms there and the
relationships among them. Also, we presented the concept of a bounded
n—linear functional with some related results.
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