
Clarification of Ambiguity for the Simple
Authentication and Security Layer

Farah Al-Shareefi, Alexei Lisitsa, and Clare Dixon

Department of Computer Science, University of Liverpool
Liverpool, L69 3BX, UK

{F.M.A.Al-Shareefi,lisitsa,cldixon}@liverpool.ac.uk

Abstract. The Simple Authentication and Security Layer (SASL) is a
framework for enabling application protocols to support authentication,
integrity and confidentiality services. The SASL was originally specified
in RFC 2222, and later updated in RFC 4422, using natural language.
However, due to the richness of natural language this involves ambiguities
and imprecision. Whilst there is an Oracle implementation of SASL,
its documentation also contains informal descriptions and under-defined
specifications of the RFCs. This paper provides clarification of ambiguity
in SASL using Abstract State Machines (ASMs). This clarification is
based on two ASM essential notions: a ground model to capture the
intended SASL behavior in an understandable way, and a refinement
notion to accurately explicate the ambiguous parts of the behavior. We
also show some differences between RFCs and the description of the
Oracle implementation. We believe our work can serve as a basis for
further implementation and for formal analysis.

Keywords: Ambiguity, Simple Authentication and Security Layer, Ab-
stract State Machines

1 Introduction

The Simple Authentication and Security Layer (SASL) is a framework that
can be used by application protocols to perform authentication, and to option-
ally supplement it with what is called security layer services, including integrity
and confidentiality. SASL was firstly described in Requests for Comments (RFC)
2222 [14], and then in RFC 4422 update [13], using natural language. Unfortu-
nately, the RFCs, being stated in natural language that intrinsically has associ-
ated informality and imprecision, are sometimes ambiguous. Despite that, there
is an Oracle implementation of SASL [15], its documentation also includes tex-
tual explanations and some unclear specification of the RFCs. In addition, this
implementation involves hidden details about the functions which are called to
achieve specific tasks.

To overcome the imprecision and ambiguity problems, formal methods can
be used as they are based on mathematical foundations [8]. Among these meth-
ods, we choose the Abstract State Machine (ASM) method [11], since it can be



used to specify systems in a rigorous mathematical, understandable, and scal-
able way [6].

In this paper, the ambiguities of the SASL textual explanations in the RFCs
and Oracle implementation documents, are analyzed formally using the ASM
method. This is achieved by implementing two strategies of the ASM method.
First, the ground model directly captures the informal SASL behavior in an
understandable and concise but precise enough manner. Second, the refinement
strategy allows us to precisely explicate and re-elaborate the under-defined no-
tions in the ground model. The refined specification is written in the executable
ASMETA Language (AsmetaL) [10], since it is close to the ASM mathematical
concepts, and it directly permits us to test specification errors.

The main contributions of this paper are:

– clarifying the ambiguities of the SASL informal descriptions in RFCs and
Oracle implementation documents clearly in terms of ASMs;

– presenting a methodology for clarifying ambiguity that starts with the RFC
document to capture its informal description, via the ASM ground model,
then it explicates the potential description ambiguities depending on other
document sources by using ASM refinement;

– highlighting the main differences between RFCs and the Oracle documents.

The rest of this paper is organized as follows. Section 2 presents background
knowledge about the SASL framework and the ASM method. Section 3 describes
the ASM formal specification, and highlights how this specification elucidates the
main ambiguities of SASL. Section 4 discusses our results. Section 5 presents
some related work. Finally, Section 6 concludes the paper.

2 Background

In this section, we describe both the Simple Authentication and Security
Layer framework and the Abstract State Machine Method.

2.1 Simple Authentication and Security Layer

The Simple Authentication and Security Layer (SASL) was initially intro-
duced in RFC 2222 [14], and later updated in RFC 4422 [13], as a framework
for providing authentication support with an optional security layer service,
such as integrity or confidentiality, to connection-oriented protocols, via sub-
stitutable mechanisms. Providing these services is achieved through using a
shared abstraction layer which has a structured interface between intended pro-
tocols and mechanisms. With this layer, any SASL supported protocol, such as
IMAP [18], SMTP [19], etc., can exploit any SASL supported mechanism, such
as PLAIN [20], DIGEST-MD5 [12], etc.

Based on RFC 2222/4422 [13,14], the client and server of the SASL protocol
application launch a negotiation about the selection of a suitable mechanism,
then they negotiate the authentication. Basically, the client requests to connect



with the server using SASL. Then, the server replies with a list of supported
authentication mechanisms. Next, the client selects the best mechanism. After
that, the authentication is started by the client via sending an authentication
command, which involves the selected mechanism and optionally authentication
data, to the server. The authentication exchange continues until the authen-
tication succeeds, fails, or is aborted by the client or the server. During the
authentication exchange, when the selected mechanism supports the security
layer, the client and server negotiate the use of a security layer. If they both
agree about using it, then both sides must negotiate the maximum size for the
cipher text buffer, that each side is able to receive. The RFCs specification, how-
ever, leaves open a number of questions, in particular: how the server advertises
its mechanisms’ list, how the client selects the best mechanism, when the client
and server agree about using the security layer and how it can be used, and how
they negotiate the maximum cipher text buffer size. Some of these questions
relate to the ambiguity and missing details of the informal description for the
API routines in the Oracle implementation documentation [15].

According to the Oracle implementation [15], the application communicates
with the structured interface by calling a suitable API routine, which in turn
calls a mechanism plug-in interface. One of these routines is: the sasl client
start() which is called by the client to select the best mechanism depending
on the security properties. The main properties that restrict mechanism selection
are: the security policies, such as noplaintext, noactive, noanonymous,
etc., and the maximum Security Strength Factor (SSF) [15] for the client,
server, and mechanism. The SSF is an integer that denotes the security layer
strength. When it is zero, it indicates only authentication, if it is one, it means
both authentication and integrity, while if it is greater than one, it denotes au-
thentication, integrity, confidentiality, and at the same time the key length for
encryption. Also the server calls the sasl listmech() routine to obtain the
mechanisms’ list that satisfies the security policies.

2.2 Abstract State Machines

Abstract State Machines (ASMs) [11] were first introduced by Gurevich as
a versatile machine to model any algorithm at an appropriate level of abstrac-
tion. ASMs have been developed to a practical and mathematically well-founded
method for high-level system design and analysis [6]. The ASM method is con-
structed from three essential notions: ASMs, a ground model, and stepwise re-
finement [6].

ASMs are transition systems which are based on abstract states, to model
the system’s structure, and on transition rules, to model the system’s dynamic
behavior. The ASM states are multi-sorted first-order structures, i.e, domains
of objects coming with functions and relations defined on them. The functions
in ASM states can be static, which are never updated, controlled, which are up-
dated by the machine itself, or monitored, which are updated by the machine’s
environment. ASM transition rules describe the modification of function inter-
pretations from one state to the subsequent one. The basic transition rule is a



function update: f(t1, ..., tn):=t. f is an arbitrary n-ary function and t1, ..., tn, t
are first-order terms, which are simultaneously updated to yield a new ASM
state. There are some rule constructors, such as: if then (conditional rule),
par (parallel execution of the grouped rules), choose (non deterministic selec-
tion), and switch case (extension of the conditional rule). ASMs can capture
the formalization of a procedural single-agent and distributed multiple agents
interacting in a synchronous and asynchronous way.

Fig. 1: Control state ASMs

There is a specific class of ASMs
called control state ASMs [6]. They can
be employed for describing various system
modes. Figure 1 shows a graphical repre-
sentation of control states and the form of
their transition rules.

Ground model ASMs are concep-
tual models for capturing informal re-
quirements of a system in a precise, con-
cise, flexible, and understandable way.
The ground model can be represented
graphically using control state ASMs.
From a concise ground model, by stepwise refinement, a more detailed model
can be obtained, through changing the states definition, or the flow of opera-
tions, or both of them.

Several projects have been developed around ASMs to make them executable,
such as CoreASM [1], the ASMETA1 [9] framework, etc. In this paper, we have
chosen the ASMETA framework, that includes integrated tools, in particular
the ASMETA Language (AsmetaL) and the ASMETA Simulator (AsmetaS) for
writing and executing ASM models [10], respectively. The AsmetaL supports
encoding of ASM models which is close to the ASM mathematical concepts.

3 The Formal SASL Specification

In this section, we show how the ASM method has been used to provide for-
mal specifications for SASL. The main aim is to clarify precisely: how the server
advertises the available mechanisms, how the client selects the best mechanism,
how the client determines the maximum size for the cipher buffer, and how
and when the security layer is negotiated. As the SASL framework has detailed
and complex behavior, we separate the SASL into three phases: the mechanism
negotiation phase, the authentication negotiation phase, and the security layer
negotiation phase. In each phase, we will present (if necessary) the ground model
for both client and server sides, that is depicted via the control state ASM, then
we will focus only on refining the rules to clarify ambiguities in the RFCs and
Oracle implementation documentation2. Each refined rule is expressed in As-

1 http://asmeta.sourceforge.net/.
2 All the rules for the refined model that is based on RFC 2222/4422 are available

online at https://doi.org/10.5281/zenodo.1204257, while for the refined model which



metaL. The mapping from the graphical notation of the control state ASM to
the AsmetaL notation is done according to the mapping shown in Fig. 1.

3.1 The Mechanism Negotiation Phase

Fig. 2 shows the ground model at the client side for this phase. This figure is
a direct interpretation of RFC 2222/4422. The client starts this phase by sending
a request to ask the server to send its mechanisms’ list. Whenever this list is
received, the guard At least one mechanism in the list is supported checks if the
client allows any mechanism in the list. If so, the client selects an acceptable
mechanism from the server list and reaches the final state for this phase Sending
authentication request. Otherwise, the client will send an abort response to the
server, and waits for an abort reply from it. When the abort reply is received,
the client aborts this exchange, by entering the Abort state.

Fig. 2: Client side for mechanism selection phase - ground model

The server side for this phase is also based on RFC 2222/4422, see Fig. 3.

Fig. 3: Server side for mechanism selection phase - ground model

The ground model depicted in Fig. 3, schedules the main steps taken by
the server for this phase. Initially, the server keeps waiting at the Waiting for
mechanisms list request state until it receives a mechanism list request from the

is based on the description of Oracle implementation documentation are available
at https://doi.org/10.5281/zenodo.1204242



client. When this request arrives, the server obtains the available mechanisms’
list to send it to the client. After sending this list, the server goes to the final
state for this phase, which is Waiting for authentication request.

It is not clear from Fig. 2, how the client chooses the desired mechanism. As
stated by RFC 4422 [13], determining the best mechanism is the client’s choice.
This is specified in the r selectmech rule shown in Code 1 (a). In this Code,
the mechanism selection is performed in an interactive manner with the client
via the monitored function insertMechanism. The selected mechanism should
be any mechanism in the arrived mechanisms’ set, which is represented by the
arrivedMechList. An arbitrarily chosen mechanism is stored in selMech.

rule r s e l e c tmech=
i f conta in s ( arr ivedMechList , insertMechanism ) then

selMech := insertMechanism
endif

(a) The r selectmech rule according to RFC 4422

function mHasGreatestSSF ($m in Mechanisms , $c in Cl i en t )=
f o ra l l $x in arr ivedMechList with

( ( $x!=$m) and a l l i n ( p o l i c i e s ( $x ) , p o l i c i e s ( $c ) ) implies
s s f ($m)>=s s f ( $x ) )

rule r s e l e c tmech=
choose $m in arr ivedMechList with

a l l i n ( p o l i c i e s ($m) , p o l i c i e s ( s e l f ) ) and
mHasGreatestSSF ($m, s e l f )=true do

selMech :=$m

(b) The refined r selectmech rule according to Oracle implementation document

Code 1: The r selectmech rule

On the other hand, the explanation of the Oracle implementation documen-
tation [15] states that the client selects the best mechanism, depending on the
maximum mechanism SSF and client’s security policy. This can be re-elaborated
by refining the rule in Code 1 (a) into the one shown in Code 1 (b). In the re-
fined rule, we added further modelling vocabulary. Precisely, let the ssf($m)
function be the SSF value for each mechanism $m in the Mechanisms do-
main, and policies($m) be the security policies set for each mechanism
$m, while policies(self) is the security policies’ set for client. The 0-ary
function self is interpreted by the client agent as itself. Each policies set
can be one or more elements from the domain Policies={noplaintext,
noanonymous, noactive, mutualauth, nodictionary}. The mHas-
GreatestSSF function returns true if the selected mechanism has the greatest
SSF value. The refined rule picks the best mechanism from the arrivedMech-
List, such that the security policies set of the selected mechanism includes all
the elements in the client’s set, and this mechanism has SSF value, which is



greater than all the SSF values of the mechanisms that their sets include the
client’s policies set.

On the server side in Fig 3, getting the available mechanisms’ list needs elu-
cidation. As indicated by RFC 4422 [13], the server just advertises the available
mechanisms’ list. This is specified in the r getmechs rule shown in Code 2 (a).
In this code, let the mList($c, self) be a set of the advertised mechanisms
which will be sent to the $c client. The saslmechs(self) set contains one
or more SASL mechanisms for server use. The server, in the r getmechs rule,
will simply make a copy of all the elements in the saslmechs(self) set and
pass it to the mList($c, self), which is initially empty set, to represent the
advertised mechanisms’ list.

rule r getmechs ( $c in Cl i ent )=
mList ( $c , s e l f ) := sas lmechs ( s e l f )

(a) The r getmechs rule according to RFC 4422

rule r getmechs ( $c in Cl i ent )=
l e t ( $ i =0) in

while $i<s i z e ( sas lmechs ( s e l f ) ) do
seq

let ($m=at ( asSequence ( sas lmechs ( s e l f ) ) , i t on ( $ i ) ) ) in
i f ( exist $p in p o l i c i e s ( s e l f ) with

conta in s ( p o l i c i e s ($m) , $p )=true ) then
mList ( $c , s e l f ) := inc lud ing ( mList ( $c , s e l f ) ,$m)

endif
endlet
$ i := $ i+1

endseq
endlet

(b) The refined r getmechs rule according to Oracle implementation document

Code 2: The r getmechs rule

Obtaining the available mechanisms’ list is described in the Oracle imple-
mentation documentation [15], as “The server can call sasl listmech() to get a
list of the available SASL mechanisms that satisfy the security policy”. In this
quoted statement, it is not obvious whether there is a specific policy for the
SASL mechanisms and what is meant to satisfy this policy. In the Java security
guide provided by Oracle [16], it says that there is a particular policy set for
each SASL mechanism, such as the {nonanonymous}, {noplaintext, noac-
tive, nodictionary}, and {nonanonymous, noplaintext} for the PLAIN,
EXTERNAL, and DIGEST-MD5 mechanisms, respectively. As an attempt to
understand the exact meaning of ‘satisfy the security policy’, we analyse the
server’s reply (sending the available mechanisms’ list to the client) in some
SASL mechanism examples. For instance, in the DIGEST-MD5 mechanism ex-
ample [12], the server sends the {PLAIN, DIGEST-MD5} list. We can see that
these two mechanisms share the nonanonymous policy. This means that the



server adopts the nonanonymous policy and it sends the mechanisms which
satisfy this policy. Similarly, in the EXTERNAL mechanism example [13], the
server sends the {DIGEST-MD5, EXTERNAL}. Again, these mechanisms in the
list share the noplaintext policy, which is supported by the server. Accord-
ingly, the r getmechs rule in Code 2 (a) can be refined into the rule in Code
2 (b).

In the refined r getmechs rule, the server gets a mechanism from the
saslmechs for the server use, which satisfies the following condition: the pol-
icy set for this mechanism contains a policy of the server’s policies set. In other
words, the policy set for every mechanism in the advertised mechanisms’ list
supports at least one server’s policy.

3.2 The Authentication Negotiation Phase

This phase is the longest phase in SASL. As a result, we divide the ground
model for both client and server into two parts: one for achieving an initial step
in this phase, and one for performing the later step(s). The number of the later
steps is determined by the selected mechanism. Due to space restrictions we do
not provide all of these constructed models3. The ground model for the client
agent of the initial and later step(s) includes (if necessary) the Get response
rule to get the required authentication data to the server. While, the ground
model for the server agent of the initial and later step(s) includes (if necessary)
the Get challenge rule to get the required authentication data to the client.

One underspecified aspect of this phase, is the negotiation about using the
security layer and the maximum cipher buffer size, which are involved in the
Get response and Get challenge rules on the client and server sides, re-
spectively. In RFC 4422 [13], it was stated that when the selected mechanism
supports a security layer, then a negotiation about using this layer must be
carried out, but how this negotiation takes place is not defined. However RFC
2222 [14] defines this by stating that the negotiation includes exchanging a bit-
mask (1: no security layer, 2: integrity, and 4: privacy), which corresponds to
a security layer level. This bit-mask defines the unstated privacy service and
ignores the confidentiality service.

On the other hand, in the explanation of the Oracle implementation docu-
mentation [15], the SSF value (0: authentication, 1: authentication and integrity,
and ą 1: authentication, integrity, confidentiality and the key length), is used
instead of a bit-mask. However, it is not clear how the client and server agree
about using a security layer.

The Java security guide provided by Oracle [16] states that the selected mech-
anism, when its SSF value is greater than or equal to 1, tells the server to send
its supported Quality of Protection (QOP) list, which includes one or more
items from the following: auth (authentication), auth-int (authentication and
integrity), and auth-conf (authentication, integrity, and confidentiality). Later,

3 The full ground models are available online at
https://doi.org/10.5281/zenodo.1200216



the client selects a protection value from this list according to its SSF value, and
sends it to the server. The server verifies that the client’s protection value is
within its list, to save the session SSF value which is equivalent to the client’s
protection value. The saved SSF value represents the agreed security layer ser-
vice. However, in this guide, there is insufficient detail about how the client and
server determine the maximum buffer size when they agree about using the con-
fidentiality service.

In the DIGEST-MD5 SASL mechanism example [12], it was stated that when
the server sends its supported maximum buffer size (if desired), the client will
check the availability of buffer size value in the received challenge. If it exists,
the client will determine that the buffer size for this session is equal to sub-
tracting 16 bytes from the minimum size of the received one and the client’s
supported one. If it is not available, the client will determine that the buffer
size is equal to the default value 65536. Following this description, we present
in Code 3 the specification of how the client determines the maximum buffer size.

i f conta in s ( rece ivCh ( s e l f ) , ”maxbuf ”)=true then
choose $max in Maxbuf with
eq ( at ( rece ivCh ( s e l f ) , i t on ( indexOf ( rece ivCh ( s e l f ) , ”maxbuf ”)+1) ) ,
t oS t r i ng ($max) ) do

i f $max<maxBuf ( s e l f ) then
maxBufDetermined:=$max´16

else
maxBufDetermined:=maxBuf ( s e l f )´16

endif
e lse

maxBufDetermined :=65520
endif

Code 3: Specifying the maximum buffer size in the client side

In Code 3, the receivCh(self) is a sequence of String that represents
the received challenge from the server, the integer domain Maxbuf contains the
following possible values for the buffer’s size {65535, 131071, 262143, 16777215},
and the maxBuf(self) is the client’s maximum buffer size. First of all, the
client checks if the receivCh(self) contains the server’s maximum buffer
size, to calculate the buffer size, or to set it to the default value. At the calcu-
lation, the client chooses an integer value from the Maxbuf domain, since the
receivCh(self) is a sequence of String, which is equal to the string value
contained in the receivCh(self). Then the chosen value is compared with
the client’s buffer size to determine the buffer size, which is stored in maxBufDe-
termined.

3.3 The Security Layer Negotiation Phase

This phase is an optional phase. Performing this phase depends on the nego-
tiation in the previous phase. This negotiation includes exchanging a bit-mask
according to RFC 2222 [14], while it includes exchanging SSF value according to



the Oracle documentation [15]. As we stated previously that the bit-mask does
not define the confidentiality service, we specify this phase relying on the Oracle
implementation documentation [15], as well as the RFC 4422 [13]. Furthermore,
the specification for integrity and confidentiality protected messages are based
on the RFC 2831 for the DIGEST-MD5 SASL mechanism [12], because the RFC
2222/4422 and the Oracle implementation documentation do not illustrate this
specification. We annotate the main information for specifying this phase in
Fig. 4.

Fig. 4: Client side for security layer negotiation phase - ground model

Fig. 4 illustrates the ASM ground model for negotiating the security layer
service on the client side. The client starts this phase by checking the SSF value,
that was agreed by both client and server in the authentication phase. If this
value is zero, then the client will reach the final state Successful. This state indi-
cates that the client has been authenticated successfully, and there is no security
layer. If the SSF value is one, this means that the subsequent protocol messages
must be integrity protected. Therefore, the flow goes to execute the Get client
integrity protected message, to obtain a test message that appends with the com-
puted Message Authentication Code (MAC) for the message sequence number
and the message itself [12]. While if the SSF value is greater than one, then the
following protocol messages must be confidentiality protected (encrypted). As
a result, the client executes the Get client confidentiality protected message, to
encrypt a test message together with its computed MAC [12]. The encryption
is done according to the selected cipher, which is one of the following: rc4-40
(40 bit key), rc4-56 (56 bit key), rc4 (128 bit key), and aes-ctr (128 bit key).
Later, the client sends the protected message to the server, and changes its state
to Waiting for server test message. Whenever the client receives a protected



message from the server, it will check the agreed SSF value. When this value is
greater than one, the client will perform confidentiality verification (decrypt the
message, compute the MAC and compare it with the received one). While, if the
SSF value is one, the client will perform integrity verification (compute the MAC
and compare it with the received one). In case that the verification succeeds, the
client reaches the final state Continue, which means the client can continue the
interactions after SASL. Whereas, the client terminates the connection with the
server and changes its state to Close, when the verification fails.

As the ground model in Fig. 4, clearly shows how the client uses a security
layer service, and how the SSF value guides the client to determine whether a
security layer has been negotiated, we do not show the refinement for this model.
Furthermore, we do not present the server ground model for this phase, since it
is similar to the client one, except that the server keeps waiting for a protected
message from the client before sending its message.

As in this phase we need to encrypt and decrypt the message with regards
to a suitable cipher, we specify the encryption and decryption actions in an ab-
stract manner based on the ASM features, see Code 4.

dynamic abstract domain CipherText
controlled key : CipherText >́ St r ing
controlled plainMsg : CipherText >́ Seq ( St r ing )
controlled pla inText : Seq ( St r ing )
controlled c iphe r : CipherText
controlled method : CipherText >́ St r ing
rule r enc rypt ( $msg in Seq ( St r ing ) , $key in Str ing , $method in St r ing )=

choose $e in CipherText with plainMsg ( $e )=$msg do
c iphe r :=$e

ifnone
extend CipherText with $ciph do
par

plainMsg ( $ciph ) :=$msg
key ( $ciph ) :=$key
method ( $ciph ) :=$method
c iphe r := $ciph

endpar
rule r dec rypt ( $c ipher in CipherText , $key in Str ing , $method in

St r ing )=
choose $c iphtext in CipherText with ( $c iphtext=$c ipher ) and

( key ( $c iphtext )=$key ) and ( method ( $c iphtext )=$method ) do
pla inText :=plainMsg ( $c iphtext )

ifnone
pla inText :=””

Code 4: Abstract specification for encryption and decryption

In Code 4, first, we introduce the specification signature. The CipherText
is an infinite domain for the cyphertext. The unary function key represents the
key for a given CipherText element. The nullary function name plainMsg is a
sequence of Strings for the plain text. The cipher is an element of CipherText
domain. The method is a cipher method that has been used to encrypt the plain
message.

After the signature we specify two rules: the r encrypt rule for converting



the presented plain message into an encrypted one using the determined key and
method, and the r decrypt rule which transforms the encrypted message into
a plain text one using a specific key and method. The r encrypt rule, firstly,
chooses an element in the CipherText domain, such that the plain text for this
element is equal to the given message. This element represents the cyphertext for
the message. When choosing an element returns nothing (the presented message
has not been encrypted previously), this rule will generate a new cyphertext,
given its plain text, key, and method, by extending the CipherText domain.
While r decrypt rule choose a cyphertext item from the CipherText domain,
in such a way that this item equals to the given cyphertext, to return the plain
text of this item. If there is no such item, this rule will return the empty string.

4 Results and Discussion

The main aim of this paper is to provide clarification of ambiguities in SASL
using ASMs. Our methodology starts with reflecting the textual description in
RFCs, using ground model notion, then it re-elaborates this description using
other document sources by exploiting the refinement notion. Table 1 outlines
the main ambiguities that have been investigated, and the source documents for
both the ambiguity itself and its formal clarified specification.

From Table 1, we can see the following:

(1) selection of the best mechanism is ambiguous in RFC 4422 [13], as it just
states that the client selects the best one. We try to elucidate this using the
description of the Oracle implementation [15], which states that the client
selects the best mechanism with the maximum SSF, and according to its
security policy;

(2) advertising the available mechanisms’ list is not clear in both RFC 4422,
which only states that the server advertises the list, and the Oracle im-
plementation, which states that the server advertises the mechanisms that
satisfy the security policy. We convert the informal description of Oracle into
a formal one, based on analysing the server reply in the document sources
shown in Table 1. We conclude that satisfying the security policy means
at least one server’s policy must be supported by every mechanism in the
advertised list;

(3) determining the maximum buffer size is under-defined in RFC 4422 [13] and
the Oracle implementation. For explicating that, we use the explanation that
is provided by the DIGEST-MD5 SASL mechanism [12];

(4) using the security layer in RFC 2222 needs more explication, as it states
that using this layer relates to the agreed bit-mask, which does not consider
the confidentiality service. Therefore, we rely on the Oracle implementation,
that uses the SSF instead of a bit-mask, to show when this layer is used.
Also, we rely on the DIGEST-MD5 SASL mechanism [12], to show how the
client and server negotiate this layer.

This paper shows how the ASM formalism is valuable in clarifying the ambi-
guity, especially with its ground model and the refinement notions. The ground



model can first capture the informal specification in understandable way and at
the desired level of details. Then, it can be evolved via stepwise refinement into
a precise and enhanced mathematical specification.

Table 1: The source document for each ambiguity and its formal clarified speci-
fication

No. The ambiguity
The document source

for ambiguity
The clarified
specification

The document source
for clarification

1
The client selects
the best mechanism

RFC 4422 [13] Code 1 (b)
Oracle implementation
document [15]

2
The server advertises
the available
mechanisms’ list

RFC 4422 [13], and
Oracle implementation
document [15]

Code 2 (b)

DIGEST-MD5 SASL
mechanism [12], Oracle
implementation document [15],
and its Java security guide [16]

3
Determining the
maximum cipher
text buffer size

RFC 4422 [13], and
Oracle implementation
document [15]

Code 3
DIGEST-MD5 SASL
mechanism [12]

4
How and when
the security
layer is negotiated

RFC 2222 [14]
Ground model
in Fig. 4

Oracle implementation
document [15],DIGEST-MD5
SASL mechanism [12], and
RFC 4422 [13]

As we construct a formal specification and provide links between it and in-
formal or underdefined resources, we could prove properties of the development
specification using the ASMETA framework in a similar way to [2].

We present an executable AsmetaL specification for private key encryption
and decryption, in an abstract style.

In our ASM specification, the timing aspects for SASL are not considered,
since neither of RFC 2222/4422 and Oracle implementation documents give spec-
ification for that.

5 Related Work

Our work elucidates ambiguities in the informal description for SASL, based
on the ASM method. Therefore, we will now discuss other work related to either
elucidating ambiguity or to the ASM method.

In [4], the ASM formalism is used to get a formal model of the Kerberos
Authentication System which is based on the Needham and Schroeder authen-
tication protocol. The formal model is used as a basis to locate the minimum
assumptions to guarantee the correctness of the system and to analyse its secu-
rity weaknesses.

In [7], the ASM ground models of a content adaptation system employed
for the interactions between different client devices and the Cloud, is presented.
This work is extended in [3], by refining the initial model into a more detailed
one, through focusing on the interactions between the client and the middleware
server to retrieve information relating to the client’s device. Furthermore, the
modelling process has been supported by validation and verification activities



which are integrated within the ASMETA framework.
In [17], abstract encryption and decryption is specified using the language

AsmL. This specification is based on the object-oriented features and constructs,
and thus it diverts from the theoretical model of ASMs.

The researchers in [5] use Higher-order logic (HOL4) to develop a rigor-
ous post-hoc specification for TCP, UDP, and the Sockets API, that reflects
the behavior of different implementations, include: FreeBSD 4.6, Linux 2.4.20-8,
and Windows XP SP1. They validate their specification against several thou-
sand traces captured from these implementations, to test whether they meet
this specification. This paper is notable in the context of our work as its au-
thors are motivated by increasing clarity and precision over ambiguous informal
specifications of the RFC, that may result in inconsistent implementations. In
this paper, we do not consider validating that the implementation meets the
specification. We focus on clarifying ambiguities in the RFC description, and on
elucidating uncertainty in the textual explanation of the implementation. Fur-
thermore, our specification is expressed using the ASM method, because it is
accessible, as it requires a minimum of notational coding, unlike HOL4, which
requires extensively annotating the mathematical definitions side-by-side with
informal specification [5].

6 Conclusion and Future Work

We have provided the ASM specifications that elucidate ambiguities in the
SASL framework. We have focused on the ambiguous parts in RFC 2222/4422
and Oracle implementation documents, including mechanism selection, providing
mechanisms’ list, defining when and how the security layer can be used, and
determining the maximum cipher buffer size.

We have showed how the comprehensible specification has been achieved
based on two ASM notions: a ground model and stepwise refinement. The ground
model enabled us to reflect the desired behavior, which is explained in RFCs, in
an understandable way. While the stepwise refinement helped us to explicate the
ambiguous part of the desired behavior in an accurate way, using other document
sources to inform us.

We convert the informal specification into formal one by expressing it in
the ASM formalism, which is mathematically well-defined, precise, and easily
understood.

To further our research we are planning to consider the security of the SASL,
to show whether the SASL specification is secure. We intend to use a suitable
security analysis technique to elicit security requirements for the SASL and to
verify them at the verification level.

Acknowledgments

The third author was partially supported by the EPSRC funded RAI Hub
FAIR-SPACE (EP/R026092/1).



References

1. The CoreASM Project. http://www.coreasm.org/
2. Al-Shareefi, F., Lisitsa, A., Dixon, C.: Abstract state machines and system theoretic

process analysis for safety-critical systems. In: Brazilian Symposium on Formal
Methods. pp. 15–32. Springer (2017)

3. Arcaini, P., Holom, R.M., Riccobene, E.: ASM-based formal design of an adaptiv-
ity component for a Cloud system. Formal Aspects of Computing 28(4), 567–595
(2016)

4. Bella, G., Riccobene, E.: Formal analysis of the Kerberos authentication system.
Journal of Universal Computer Science 3(12), 1337–1381 (1997)

5. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.:
Engineering with logic: HOL specification and symbolic-evaluation testing for TCP
implementations. pp. 55–66. ACM Press (2006)

6. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

7. Chelemen, R.M.: Modeling a web application for cloud content adaptation with
ASMs. In: Cloud Computing and Big Data (CloudCom-Asia), International Con-
ference on. pp. 44–55. IEEE (2013)

8. Froome, P., Monahan, B.: The role of mathematically formal methods in the devel-
opment and assessment of safety-critical systems. Microprocessors and Microsys-
tems 12(10), 539–546 (1988)

9. Gargantini, A., Riccobene, E., Scandurra, P.: Model-driven language engineering:
The ASMETA case study. In: Software Engineering Advances. ICSEA. The Third
International Conference on. pp. 373–378. IEEE (2008)

10. Gargantini, A.M., Riccobene, E., Scandurra, P.: A metamodel-based language and
a simulation engine for abstract state machines. J. Univ. Comput. Sci. 14(12),
1949–1983 (2008)

11. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Specification and Validation
Methods, pp. 9–36. Oxford University Press (1995)

12. Leach, P., Newman, C.: Using Digest Authentication as a SASL Mechanism. RFC
2831 (2000)

13. Melnikov, A., Zeilenga, K.: Simple Authentication and Security Layer (SASL).
RFC 4422 (2006)

14. Myers, J.: Simple Authentication and Security Layer (SASL). RFC 2222 (1997)
15. Oracle: Writing applications that use SASL. In: Developer’s Guide to Oracle

SolarisR©11 Security, chap. 7, pp. 126–148. Oracle (2012)
16. Oracle: Java SASL API Programming and Deployment Guide. In: Java Platform,

Standard Edition Security Developers Guide, chap. 10, pp. 21–28. Oracle (2016)
17. Rosenzweig, D., Runje, D., Slani, N.: Privacy, abstract encryption and protocols:

an ASM model-part I. In: Abstract State Machines 2003. pp. 372–390. Springer
(2003)

18. Siemborski, R., Gulbrandsen, A.: IMAP Extension for Simple Authentication and
Security Layer (SASL) Initial Client Response. RFC 4959 (2007)

19. Siemborski, R., Melnikov, A.: SMTP Service Extension for Authentication Initial
Client Response. RFC 4954 (2007)

20. Zeilenga, K.: The PLAIN Simple Authentication and Security Layer (SASL) Mech-
anism. RFC 4616 (2006)

http://www.coreasm. org/

	Clarification of Ambiguity for the Simple Authentication and Security Layer

