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Abstract. The aim of this research is focused on the mathematical optimization in computational 

systems biological models based on find the good method that gives converges faster. Our strategy 

is to use Bundle Method instead of using Subgradient Methods. Also, we improve the convergence 

of theoretical properties of the methods. The basic idea of approximation is the subdifferential of 

the objective function by using subgradients from previous iterations of a bundle method. 

 
Keywords: Bundle method, Subdifferential, Sub gradient. 

 
1. Introduction 
Optimization is an essential mathematical tool that aims to find the Best solution that provides the 

minimizers or maximizers value of an objective function subject to equality or inequality constraints. The 

optimization algorithm is an important tool to find the solution, usually with the help of a computer, by 

means of an iterative procedure that begins with an initial guess of the value of the variables and generates 

the sequence of improved evaluate, or iterates, until we terminate at an optimal solution (Oster, 2014). A 

good algorithm should be robust, efficient, and accurate; that is, it should always work, it should be fast, 

and it should provide a better approximation of an optimal solution (Wright & Nocedal, 1999). The 

application, optimal control, economics, applied mathematics, computational chemistry and physics 

(Bertsekas, 2014). Bundle Methods, Derivative Free Methods, Subgradient Methods, Gradient Sam- pling 

Methods Hybrid Methods, Special Methods The reasons we are interested in Bundle Method that the 

whole subdifferentiable of the function but only one arbitrary subgradient at each point (Bertsekas, Nedi, 

Ozdaglar, et al., 2003). 

 

2. Subdifferential and Subgradient  
Subdifferential calculus is a powerful tool to hold convex optimization where the objective function 

is nondifferentiable. We notices the subgradient and the subdifferential of a convex functions, see 

[(McCormick, 1983), (Wright & Nocedal, 1999), (Cook, Cunningham, Pulleyblank, & Schrijver, 
2009)]. 
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Definition 2.1 (Wright & Nocedal, 1999) Let the convex function � ∶  ��� →  �� is the set 
�� (x) of vectors 	, so � is the subdifferential such that, 

 

 �� (
)  =  { 	 ∈  ��� | � ()  ≥  � (
)  +  	T ( −  
) ��� ���  ∈  ��� }. 
 

Definition 2.2 (Cook et al., 2009) Let � ⊆  ���. Such that the statements hold, 

 
�
1 +  (1 –  �) 
2 ∈  �, ∀
1, 
2 ∈  �, ∀ � ∈  [0, 1] , 

 

Therefore � is denoted to be convex. Shown that a set � ⊆  ��� is convex if and only if for any 

1, . . . , 
� ∈  �, the convex combination. 

∑���
�  ζixi, 

 

such that ∑���
�   ζi = 1, ζi ≥ 0, i = 1, . . . , n belongs to �. 

 
Definition 2.3 (Cook et al., 2009) Let S  ⊆  IRn   be  a nonempty  convex set. If 

� ∶  � →  �� satisfies 
�  (�
�  +  (1 –  �) 
�)  ≤  ��  (
�)  +  (1 −  �) � (
�),      ∀
�, 
�  ∈  �, ∀ � ∈  [0, 1], 

therefore � is said convex function on S. If the inequality is strict inequality for all  x1 ≠ x2 and for 

all ζ ∈ (0, 1), thus f is called a strictly convex function on S. If we have a constant � >  0 such 

that for all 
�, 
� ∈ S, and for all α ∈ [0, 1]. therefore f is said strongly convex function on S. A 
function f is concave if −f is convex. 
�(� 
1 +  (1 − �) 
2)  ≤  � � (
1) + (1 − �) � (
2)  −  

�

�
� � (1 − �) ǁ
1 − 
2ǁ2 , 

3.Differentiable of Vector Functions      

In this section, we begin with various definitions concerning differentiability and the derivative of 

a scalar-valued function, see (Papadimitriou & Steiglitz, 1998) (McCormick, 1983) (Bertsekas, 

1999). 

Definition 3.4 (Bertsekas, 1999) Assume ψ: IRn → IR and x ∈ IRn. Then the partial derivative 
of ψ on x with respect to xi is defined to be 

��

�
�
= lim

!→"

�(
 + #$�) − �(
)

#
 

where ei is ith unit vector. The gradient of ψ at x is defined as the column vector 

 

 

 

 

 

 

 

 

 

 

 

∇&(
) = 

�&(
)

�
₁
 

        . 
                 . 

                 . 

 

        ��(x) 
      �
� 
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The Hessian matrix is defined to be the n × n symmetric matrix 

 
                                                  *²-

*/₁*/₁
     *²-

*/₁*/₂
     ⋯   *²-

*/₁*/5
      

 
 
                           ∇2�(x)  =        

*²-

*/₂*/₁
      *²-

*/₂*/₂
     ⋯   *²-

*/₂*/5
  

                             

                                                    ⋮             ⋮          ⋱         ⋮       
 

                                                
*²-

*/5*/₁
        *²-

*/5*/₂
    ⋯    *²-

*/5*/5
 

 

The directional derivative formula of the function � at 
 in the direction 8 

given by 

   

�9(
, 8)    =  lim
!→":

�(
 + #8) −  �(
)

#
. 

We said the function ψ is differentiable at x iff the gradient ∇ψ(x) exists and satisfies (∇ψ(x), 
d) = ψJ(x, d), ∀d ∈ IRn.  Moreover, we say the function ψ is differentiable on S  of IRn  if it is 
differentiable on x  ∈ S, and ψ  is continuously differentiable over S, if 

 

lim
;→"

�(
 +  8)  −  �(
)  −  (<�(
), 8)

 ǁ 8 ǁ
= 0       ∀
 ∈ �, 

where ǁ · ǁ is an arbitrary vector norm. 

 

Definition 3.5 (Bertsekas, 1999) Let ψ : IRn → IR be differentiable at x ∈ IRn. We can say that d∈ 

IRn is a descent direction of the function ψ at x if 
 

(<�(
), 8)  <  0. 

Definition 3.6 We define f is little-oh of h as x approaches a and write 
� (
)  =  �(ℎ(
)) �A 
 →  �, 

thats mean 

 

lim
/→B

�(
)

ℎ(
)
= 0 

In cases where there is a third function, g(x), � (
)  =  C(
)  +  �(ℎ(
)) which implies  

lim
/→B

�(
) − C(
)

ℎ(
)
= 0 
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That is, for h : IRn → IR, we have 

lim
D→E

�(ℎ(
D))

ℎ(
D)
= 0, 

for all sequences {xk} such that xk → a and h(xk) ƒ≠ 0 for all k. 
 
Theorem 3.1 (Taylor Expansion) (Bertsekas, 1999) Assume ψ : IRn → IR be con -tenuously 

differentiable. Then, for all x1, x2 ∈ IRn, there is an α ∈ [0, 1], such that 
 

(
�) = (
�) + ∇(α
� + (1 − α) 
�)T (
�  − 
�). 
Also, if ψ is twice continuously differentiable, then, for all x1, x2 ∈ IRn, there is α ∈ [0, 1], such that 

�(
2) = �(
1)  +  <�(
1)G (
2 – 
1)  + 
1

2
 (
2 – 
1)G <2�(H
1  +  (1 –  H) 
2) (
2 – 
1) . 

 
  In addition, if x, u ∈  IRn and η ∈  IR, such that  

�(
 +  IJ)  =  � (
)  +  IJG <� (
)  + 
I²

2
 JG <²�(K)L +  M(I²)     �A I  → 0 . 

Definition 3.7 (Bertsekas, 2014) The function ψ : IRn → IRm, with component functions ψ1, . . . 
, ψm, is called differentiable if each component is differentiable. The gradient matrix of ψ, 
denoted <�(
), is the n× m matrix with ith column is the gradient <N�(
) �� �N ∶       

 

∇�(x) = [∇�₁(x) ⋯ ∇�m(x)]. 

Then the Jacobian of ψ at x is defined 

 

 

 

 

O(
) = [<�(
)]P =                          = 

 

 

 

 

3.1   The Optimal Conditions of The Unconstrained Optimization    
  

Here review the unconstrained optimization problem. If X = IRn, i.e., minimize � without 

constraints (Bertsekas, 1999), it can be expressed as: 
 

 

                                                    Minimize �(
)                          (1) 

                                                     
 ∈ ��� 

 

� If �  is continuous differentiable, then a necessary condition for 
∗ ∈  IRn  to be a solution 

of problem (1) is 

*-R(S)

*S₁
         ⋯        

*-R(S)

*ST
   

 

   ⋮               ⋱            ⋮ 
 
*-U(S)

*S₁
       ⋯      *-U(S)

*ST
 

∇��(
)P 

 

⋮ 
 

∇�V(
)P 
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<� (
∗ )  =  0. 
� If � is twice continuously differentiable, then a necessary conditions for 
∗∈  IRn to be a 

solution of problem (1) is 

                                                            <� (
∗ )  =  0,   <
 
2� (
∗ )  ≥ 0. 

� The sufficient conditions for 
∗ ∈ IRn is said to be a local solution of problem (1) are 

<� (
∗ ) =  0,   <
 2� (
∗ ) > 0. 

Theorem 3.2 (The First Order Necessary Conditions) (Bertsekas, 1999) 

Let f : IRn → IR be differentiable. Let 
∗  is a local minimum of f , then <� (
∗)  =  0. 
 
Proof:  Define ℎ ∶  �� →  �� �A ℎ(I)  =  � (
∗   +  IJ) for some u  ∈  IRn,  then ℎ9(I)  = 

  JP <� (
∗    +  IJ). �� I =  0, W$ C$# ℎX(0)  =  JG <� (
∗). By definition, 

ℎ9(I)  = lim
Y→"

� (
∗    +  IJ) − � (
∗)

I
 

we know that 
∗  is the local minimum, such that there exist t > 0, implies  f (
∗ + ηu) ≥ f (
∗) for 

all 0 < η ≤ t, therefore we get JG <� (
∗)  ≥  0. Since u is an arbitrary, we can replace u by −u, 

and thus −JG <� (
∗)  ≥  0.Therefore, JG <� (
∗)  =  0, for all u ∈ IRn.Thus,<� (
∗)  =  0.  
 

Example: Consider the following simple linear programming problem:     
 

                                                  minimize         
� + 3
� + 5
^ 

 

                            (_)                 subject             
� + 
� + 
^ = 3                   (2) 

                                               

                                                                            
 ≥ 0 

 

    

The dual of problem (2) is given by 

 
                                               minimize         3� 

 

                            (O)                  subject            � ≥ 1,   
                                                                                                                     (3) 

                                                                            � ≥ 3,   
 

                                                                            � ≥ 5.
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The optimal solution of problem (2) is x1 = x2 = 0, x3 = 3 and the optimal value is x1 + 3x2 + 5x3 = 15; 

The optimal solution of problem (3) is y1 = 5, also the optimal value 3y1 = 15. 

 

3.2 Computational of Biological Models 

In this section, we introduce the Biological Models which will be fundamental in the algorithm. In 

table (1) notices the CPU time vs the number of function calls for different graphs. We observe the 

Bundle method reaches the optimality solution in less time than the Subgradient methods. 

Furthermore, we can see that the number of iterations (reported as fcallsBudl and fcalsSubgr) required 

by the Bundle method is less. In Figure (5), we plot the bounds against the number of function calls. 

Since the number is deterministic, while the CPU time can vary between runs, we chose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: The Bundle Method 

 

                  1  Given  y0, and α0 > 0. 

                       2  Find  yk+1 such that 

 

                                                           yk+1 = argmin Bq(y, αk). 
                  3 Choose 

                                                     αk+1 ≤ αk. 
                4  Set k = k + 1 and repeat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: the function vs Bounds call for Bundle method and Subgradient 

methods to include the number of iterations in addition to the CPU 

time. 
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Table 1: CPU Time and number of function calls for Bundle method and Subgradient method. 

 

Our results 

Problem timeBudl timeSubgr fcallsBudl fcallsSubgr 

g05 50.0 2.1 4.0 86 166 

g05 50.1 2.9 3.5 90 136 

g05 50.2 2.7 4.8 87 192 

g05 50.3 3.0 5.8 103 221 

g05 50.4 3.5 7.2 109 239 

g05 50.5 3.0 5.1 96 197 

g05 50.6 3.5 4.5 92 164 

g05 50.7 2.5 4.5 84 154 

g05 50.8 3.1 6.4 95 183 

g05 50.9 2.3 4.5 76 149 

 

4. Conclusion 

Initially, introduce the Biological Models which will be fundamental in the algorithm, then 

implemented Bundle Method and Subgradient method for linear programming problems. We used 

them on several graphs. Our results show that Bundle method reaches the optimal solution in 

approximately half the number of function calls as the Subgradient method, and approximately 1.7 

times faster in CPU time. 
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