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ABSTRACT

Estimating upper and lower bounds is a key issue in neural network approximation. Many papers
conclude one or both bounds of the first and second orders in terms of modulus of smoothness
in recent years. In this work, we approximate a function in the space of Lebegue-integrable
multivariate functions of period 2 with order p, where f € L} ([-m,7]™),1 < p < o is obtained.
Then we obtain two-sided estimates of mth order modulus of smoothness of f, ie.
|DETN, (f;) — DF (fi)||p~wm(D5 fi,5)p, where TN, is the FFNs with three trigonometric hidden

layer units that is defined by Suzuki [Suzuki1998].
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1. INTRODUCTION AND MAIN RESULTS

Many scientists and researchers have used multilayered neural networks to approximate multivariate
functions for several years [see Lin and Cao 2015, Li and Xu 2007, Suzuki 1998 & Wang and Xu 2010].
They have established both upper and lower bounds of simultaneous approximations for 1st and 2nd
orders, spaces of function to approximate and approximators as well. That work solves many applicant
issues in science and engineer. Our goal was to achieve that both bounds of modulus of smoothness
of order m for a pth Lebegue integrable multivariate function that is approximated by a multi-layered

feedforwrd neural network.

Given a natural number m, t = (), € N™ , a function f belongs to the space L5_([—m, m]™) under the

norm defined by

i, = (@0 T LI Pdx)" 1<p <o "
sup{|fC)[: Ix;| < 1} p = oo,

Forf g e L5 ([—m ™), define the following from [Liflyand 2006]
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(fgy=m™ " - [" f(Hg®dt, )

and

frgx) = @Em™ [T - [T f(Dgx - vdt 3)

In this paper, we use modulus of smoothness to measure the estimates of approximation, so we

need to define the kth symmetric difference by
Kk ok k—j k k.
Aff() = Ejo (D7 )+ G = DY), (4)
and the kth modulus of smoothness by

09, = sup Bt ©

Now, let us state some important properties of the classical modulus of smoothness that will be
minor in our proofs, such us [Dineva, A, Varkonyi-Koczy, Tar and Piur 2015]
(1) wk(f,8), is monotone increasing about &;
(2) wi(£bd), < (1 +b)rwy(£8),,b > 0;
(3) wi(£,8), < 2w (£,6),,0<j<k;
(4) orss(£8), < Skws(f(k),S)p;

In order to approximate f = (f;)iL, by g = (g;)ix, with p-norm, each g; should approximates each f;
with p-norm.

Finally, we need to define the three hidden trigonometric layer feedforward neural network defined
by [Suzuki 1998]
T
TNy[f] = (TN [£])., = (TNy[fi], ..., TNy [f]) (6)
Where

0<p,qvsy
TNy [fl] (X) = ey [fl] + Z {ay,p,q [fl] COS(p - q)X + By,p,q [fi]Sin(p - q)x}

combinations
of p=geNy

We will prove the following equivalence of simultaneous approximation by Suzuki’s three hidden layer

neural network with modulus of smoothness of order m. It is summarized by:
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[IDPTN, (£) = DP(E)| ~wm (DP; 8),
Our main result is separated in terms of two theorems as follow:
Theorem 1. For DFf = DP(f)L, € LF_([-m, m]™), we have

2™ ml
) +m og(mm)

D9, () - DR, < [(E o ] (1 + 5w (0, 8).

Theorem 2. For DFf = DB(f)IL, € L} _([-m w]™), we have

IDPTN, (£) = DP(E)]] ) = wm (DPf;, 8),

2. AUXILIARY LEMMAS

In order to prove our theorems, we need to define Dirichlet kernel of m-dimension al space Ng*
from [Liflyand 2006] as follow:

o sin (2”i - %) t; — sin (25i+1 - %) t;

7)
— (
0<Y cj<m i=1 2sin (71)

Kqn(0) =

One dimension, Dirichlet Kernel has very useful properties, we have to verify them for m

dimension to be used in our proofs. They will be summarized in the next lemma.

Lemma 1 ( Properties of Dirichlet Kernel of m Dimension )

1. K, iseven.

n
2. Kol < (n+2)
. 1
3 F'L:z)qs 1K, (O] 5% for0 <t<m,
m my m 7 m
4. 2(3) togm < [7 . [ K, e < 27 [(55) "+ (nE5)
Proof:
The fact that
m n
1 .
K, (t) = E + COSltj
0<Y tj=n i=1 j=1
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solves easily properties 1 and 2. While 3 comes directly from the properties of 1-dimensional Dirichlet

. l ti
kernel |Sm(l:—+2)| < [Kn(t)l < % for 0 < t; < m. For more information see [Carothers,2006].

The upper estimate in (4) is proved as follow:

[ w1 3 [t

. (4
0<) ci<m i= 1 2sin (71) |
sm 2 1— — sm 2‘31+1 - %) t;
<m Y f f Bk Sl VA T f f ——— =y
o<§er<m | -1 ZSln -1 2sin (2)
L] - sm Cit1 — %) t
< om 261—— dt, +f f HZt dt, +f f — 2 dy
0<XY ci<m | i=1 2sin (2)
h 1
, where p = —
m 2 i— _ m Ci+1 — _
1_[ + l_[ +2 1_[ (logm + logm)
0<) ci<m | i= i=1

<om [2(2m2) +2 (g (log(nm)))m] <2m [(%)m +(n '°g<“‘“>)m].

2

For the lower bound, we have

f f K, (t)|dt_f f S‘“(Zq_%)ti‘sm(zc‘“—%)ti N

. (4
m 0<Zc <m i= 1 2sin (71)
sm Zci — %) t; — sin (Zciﬂ - %) ti|
> gm z f f - dt;
0<¥ ci<m | i |
[ L1 L1 - 1
(@i-gn (-] sinx; (ZC'“’i) (ii—g)n smxl+1
A | e
0<Sc<m |70 0 i=1 ! 0 =1
[ L1 X 1 : 1
(g (2| sinx; (irrg)n  (2fa—g)m|{® sinx;,
> om z l_[ dx; + H— dx,
0<¥ri<m | 0 0 i=1 Xi 0 0 i=1 Xi
i m m
mT mT sinx; mT mT SinXiyq
> gm Z 1_[ Hdxi+ [ H— dx,
0<¥ c;<m L70 0 lhi=1 0 0 [G=1
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km km km
> 22m Hz f f |sinx;|dx; + nz f f |sinx; |dx;
Kty Jk-1ym o K)oty Jke1yn " '

0<) ci<m [1 1 k=1

m

= ([)
= g

Letr = ()2, € N*and y € N.
Applying (1),(3), , we have
TNyf = (TNy£) | = (K *£).
where
(K, * £)(x) = (2m)™ f f Zf(x + K, (Hdt
i=1

Then, we have by (5),(7) and Lemma 1

[DPTN, (£) — DB(fi)”p =

iy [ [T k0 (904 0 - D) d
n _{ f_n yt;( X+t x)tp
<ao [ [ " K, (0| arDP o | dt

< (2m)™1 + § HMw,, (DPE, s)p ffn K, (t) dt

Finally, by lemma 1, we have

2m

[IDPTN, (F) — DB(fi)”p <

8

+m]L(“m)] (145w, (DPF,5) . m

6. Proof of Theorem 2.

Using the properties of the classical modulus of smoothness mentioned above and applying (1) and

(3) again, we have

wm(DPF, 8) < 8™[DP(E)]| < 5™ [IDPTN, (F) - DRE| + ||D3TNy(fi)||p]

42



International Journal of Applied Mathematics and Statistics
pl

< 8™ [[IDPTN, () ~ DPE)]| + (@2m)~™(1 + 87w (DPF, 5) f f ' K, (t) dt}

< 8™ |||DPTN, () — DB(fi)”p +

m)™ fan Ky(t)iDBfi(X+t)dt
“n - i=1

< o7 [P, ) = P, + @ [ [ Ky IIA?‘D“fi(X)“pdt]

Thus, Lemma 1. finishes the proof

IDPTN, () — DP(E| = [6—'“ -1+ HmEm™ f f "k, dt] wm(DPF;, 5)

2 m
> [a-m 201+ 6-1)m< m) logm] wm(DPF, ). m

'

7. CONCLUSIONS AND FUTURE WORK

In this paper, the essential problem of simultaneous approximation of functions and its derivatives using
neural networks is studied in terms of modulus of smoothness of order m. We found a reduced error of
approximation by raising the order of modulus of smoothness to m, the order of the multivariate function.
The function itself belongs to a Lebegue-integrable periodic multivariate functions, which is useful in
various fields of approximation. Also, using FNNs to approximate multivariate functions is closer to
touch the nonlinearity of some complicated functions. That clears the way to study simultaneous neural

networks approximation in terms of Dunkl operator in the future.
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