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Abstract. The objective of our research paper is to introduce as well as to study many 

essential properties of the concept of extending semimodules.  A semimodule S is 

named extending (CS) if every subsemimodule of S is essential in a direct summand 

of S. Therefore, extending semimodule behaviour with respect to direct sums and 

direct summands are examined. Moreover, studying some properties of these 

semimodules concepts, e.g., every direct summand of a CS-semimodule is a CS-

semimodule. While the direct sum of extending semimodules is not necessarily 

extending. 

1. Introduction 

The A T-module S is called an extending module (CS–module) based on the extending 

property as follows: for each submodule X of S, there exists a direct summand N of S, which 

is an essential extension of X. It is known that a complement submodule need not be a 

summand, in the class of CS–modules any complement is a summand. Originality of CS-

modules was presented by Von Neumann in 1930 [1]. In 1960, Utumi has studied this 

condition (identifying it as C1 condition) in his study on self-injective and continuous ring [2]. 

In fact C1 condition is common generalization of the injective and the semi simple condition, 

this motivates the name of extending condition. Another name of this condition is CS 

condition. it has developed in many articles  and in at least [3][4][5].  

In recent years, the extending modules theory has come to represent an important role and 

generally major contributions to this theory, through its widely available interesting findings 

on expanding properties in the theoretical preparation of the module. For background and 

applications of extending module (see [6]).  

 

In this work, the extending semimodule over a semiring will be introduced and investigated. 

A semiring can be defined as a set T, which is non-empty together with two binary operations 

multiplication (.) and  addition (+) ; as mentioned that (T, .)  is a monoid with an identity 

element 1 ≠ 0; (T, +) is a commutative monoid with identity element 0; t0 =0t= 0  for all t ∈T; 

a1(a2+ a3) = a1a2 + a1a3 and (a2 + a3)a1 = a2a1 + a3a1; for all a1, a2, a3 ∈T. The semiring T is 

commutative if the monoid (T, .) is commutative [7]. Let (S, +) be an additive abelian monoid 

with additive identity 0S. Then S  is named a left T-semimodule if there exists a scalar 

multiplication T×S→S defined by (t, x) ↦ tx, such that  t(x + y) = tx + ty;   (ts)x = t(sx);  (t + 

s)x = tx + sy ; 0TS = t0S = 0S for all  x, y ∈ 𝑆 and for all t, s ∈T [7].   
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A non-empty subset K of a left–semimodule S is called subsemimodule of S if K is closed 

under addition and scalar multiplication, that is K a T-semimodule itself (denoted by K≤S) 

[8]. A T-semimodule S is said to be a direct sum of subsemimodules S1, S2,…, Sk of S, if each 

s ϵS can be written uniquely as s = s1 + s2 +…+ sk, where si ϵSi. It is denoted by S = S1⨁ S2⨁ 

…⨁Sk. In this case each Si is called a direct summand of S [9].  

 

If T is a semiring and S, N are left T-semimodules, then a map P:S→N is called a 

homomorphism of T-semimodules, if satisfied the following, P(s + s') = P(s) + P(s' ); P(t s) 

= tP(s), for all s, s' ∈S and t ∈T. The set of T-homomorphism's of S into N is denoted by 

Hom(S, N).  A homomorphism P is called an epimorphism if it’s onto, it is called a 

monomorphism if P is one-one, and it is isomorphism if P is one-one and onto, and ker(P) = 

{s ϵS|P(s) = 0}. If P is a homomorphism from  a T-semimodule to itself, P is called 

endomorphism of S, End(S) means the set of all T- endomorphism's of S. Using standard 

arguments, it can be shown that for each T-semimodule S, End(S) is a semiring [7].  

 

A subtractive subsemimodule (or k-subsemimodule) K is a subsemimodule of S such that if 

k, k + s ∈K then s ∈K [9]. Note that any direct summand is subtractive [11]. A semimodule S 

is said to be semi subtractive, if for any s, s'ϵ S there is always some h ϵ Satisfying s + h = s' 

or s' + h = s [7]. A nonzero T-subsemimodule K of S is named essential (large) and write (K 

≤e 𝑆), if K∩L ≠ 0 for every nonzero subsemimodule L of  S [12]. A subsemimodule K of 

semimodule S is called closed if K has no proper essential extension in S (denoted by N≤ c S) 

[13].  

 

Let S be a T-semimodule, A and B are subsemimodules of S; A is called intersection 

complement (briefly complement) of B if A∩B = 0 and A is maximal in the set of all 

subsemimodules of S that have zero intersection with B [13]. A subsemimodule K of a 

semimodule S is said to be closure of a subsemimodule N in S if K is closed and N essential 

in K [13]. A T-semimodule N is named (A-injective or injective relative to A), if for any 

subsemimodule V of A, each homomorphism from V into N can be extended to a T-homomorphism 

from A to N. The T-semimodule N is injective if it is injective relative to every T-semimodule [14]. If E 

is an injective T-semimodule, and it is a minimal injective extension of the T-semimodule S, then E   is 

called an injective hull of S, denoted by E(S).  

2. CS-Semimodule 

In this section, CS-semimodule will be presented as well as investigating some properties of 

them. Initially for this purpose, some properties of complement subsemimodules that are 

useful in analyzing the structure of extending semimodule, will be given.  

According to [6], the concepts for modules will be converted for semimodule in the 

following. 

 

Detention 2.1: A T-semimodule S is said to be extending (CS-semimodule) if every 

subsemimodule of S is essential in a direct summand of S.  

It is clear that any simple T-semimodule (has no nontrivial subsemimodules) is CS. In fact 

any semisimple T- semimodule (has each subsemimodule as a summand) is CS, too. 

It is known that any summand of a T-semimodule is closed, but the converse is not. 

 

Example 2.2: S=ℤ8 ⨁ ℤ2, R= ℤ. Let A = 〈(2,̅ 1̅) 〉, then A≤𝑐S, but  not a summand of S.  

Proposition 2.3: S is CS-semimodule if and only if every closed subsemimodule of S is a 

direct summand of S. 

Proof: (⟹) Assume S is a CS-semimodule, let K ≤c S then K ≤e 𝑆′, where 𝑆′ is a summand 

of S, then by definition of closed subsemimodule, K = 𝑆′, that is K is a summand of M. 

(⟸) Conversely, let K ≤ S, and let S' be closure of K, then 𝑆′is direct summand of S and K 

≤e 𝑆′, hence S is CS-semimodule.    □ 

By (Proposition 2.3) S in example 2.2 is not CS. 
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Lemma 2.4: If K≤ 𝑆 and L≤𝑒 𝑆 then L∩ 𝐾 ≤𝑒 𝐾. 
Proof: Clear.       □ 

Lemma 2.5: If K/L ≤𝑒K'/L, then K≤𝑒 𝐾′. 
Lemma 2.6: If L  ≤𝑐 S and N≤S, then L/N ≤𝑐S/N 

Proof: Assume that L/N is not closed in S/N then there exist L'/N≤S/N and L/N≤𝑒L'/N (L≠L'), 

then L≤𝑒 𝐿′, which contradicts the assumption L ≤𝑐S,   hence L/N  ≤𝑐S/N.     □ 

 

Lemma 2.7: A subsemimodule K is closed in S if and only if whenever K≤N≤𝑒S then 

N/K≤𝑒S/K    
Proof: By (Lemma 2.5), it is enough to prove the necessity condition.  

Suppose 𝐾 ≤𝑐 𝑆 and K≤N≤𝑒S. Let L be submodule of S such that K≤L and (N/K)∩(L/K)=0, 

then K=N∩L≤𝑒L, based on Lemma(2.4). Since L is closed, then L=K and L/K=0. Hence N/K 

≤𝑒S/K.      □ 

 

Lemma 2.8:  If K ≤𝑐 N and N  ≤𝑐S then K  ≤𝑐S. 

Proof: Let 𝐾′ be a complement of K in N and also 𝑁′ be a complement of N in S, then N ⨁ 

𝑁′ ≤𝑒S. Since N is closed in S (by assumption) and 𝑁 ≤ 𝑁⨁ 𝑁′ ≤𝑒S, then based on (Lemma 

2.7) (𝑁⨁ 𝑁′)/𝑁 ≤𝑒 S/N. Sinc(𝑁⨁𝑁′ )/𝑁 ≅ ((𝑁⨁𝑁′ )/𝐾)/(𝑁/𝐾) and, S/N ≅
(S/K)/(N/K), then (𝑁⨁𝑁′ )/𝐾 ≤𝑒

 
𝑆/𝐾. By the same way(𝐾⨁𝐾′ )/𝐾 ≤e

 
𝑁/𝐾. 

Now, (𝑁⨁𝑁′ )/𝐾 = (𝑁/𝐾) ⨁((𝐾 + 𝑁′ )/𝐾), then (𝐾 + 𝐾′ + 𝑁′ )/𝐾 = ((𝐾 +
𝐾′ )/𝐾)⨁((𝐾 + 𝑁′ )/𝐾 )) ≤𝑒 𝑆/𝐾.   
Assume that 𝐾 ≤𝑒

 𝑀 ≤ 𝑆, then 𝐾 ∩ (𝐾′ + 𝑁′ ) = 0 implies 𝑀 ∩ (𝐾′ + 𝑁′ ) = 0. Therefore, 

(𝑀/𝐾) ∩ ((𝐾 + 𝐾′ + 𝑁′ )/𝐾) = 𝐾. Thus K=M and which implies  𝐾 ≤c 𝑆.        □ 

 

Remark 2.9: Every subsemimodule K of a semimodule S is essential in closed 

subsemimodule H of S [13]. 

 

Proposition 2.10: Let S = S1⨁ S2 then S is CS-semimodule if and only if every complement of 

Si, where (i = 1 or 2) is CS-semimodule and a direct summand of S. 

Proof: Let K be complement of S1 in S, since S is CS-semimodule, then K is closed 

subsemimodule of S, and by (Proposition 2.3), K is a direct summand of S. 

Let L be closed subsemimodule of K, by (Lemma 2.8), L ≤c S and L∩S1 = 0, again since S is 

CS-semimodule, L is a direct summand of S, so S = L⨁ 𝐿′, for some L'≤S and by Modular 

Law K = L⨁(L'∩K), therefore L is direct summand of K, and K is CS–semimodule. 

Conversely, let N ≤c S then there exists a closed subsemimodule H of N such that N∩S1≤eH, 

clearly (H∩S2) = 0. By Zorn's Lemma, there exists a complement Q of S2 in S with   H  ≤Q. 

Also, by (Lemma 2.8), H ≤c S, hence H ≤cQ, since Q is a complement of S2 then by 

assumption, it is CS-semimodule, hence H is direct summand of S, therefore S = H⨁𝐻′ for 

some 𝐻′ ≤S, by Modular Law N = H⨁(N∩𝐻′), since (N∩H') is closed in S, and (N∩𝐻′) ∩ S1 

= 0 hence, (N∩𝐻′) is direct summand of S and also for 𝐻′, 𝐻′ = (N∩𝐻′) ⨁𝐻′′ for some 

𝐻′′ ≤S, so S = N⨁ 𝐻′′, therefore N is a direct summand of S.      □ 

 

Example 2.11: S = ℤ2⨁ ℤ4. Let Ni≤ S, where (i = 1, 2, 3, 4,5) such that N1 = ℤ2 ⨁ 0, N2 = 

0⨁ ℤ4,  N3 = 〈(1,̅ 1̅) 〉 = 〈(1,̅ 3̅) 〉, N4 = 〈(1,̅ 2̅) 〉, and N5 = 〈(0, 2̅) 〉, N2 and N4 are 

complement of N1, and they are direct summand of S, N1 and N3 are complement of N2, and 

they are direct summand of S,  then S is CS. 

As it is mentioned before, the injective hull need not be exist for any semimodule. In the 

following results, the existence of injective hull is needed. For this purpose, we must add a 

condition that the semimodule has the injective hull. 

 

Lemma 2.12: Let S = S1⨁ S2 be semimodule (with injective hull) and 𝜑 ∈ Hom(S1, E(S2)), K 

= {s1+𝜑(s1): s1∈ 𝜑−1(S2)} then: 
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1. 𝜑−1(S2) ∩ K = Ker𝜑. 

2. If 𝜋:S→S1 is the natural projection then 𝜋 |K is a monomorphism.    

Proof: For (1), first we must prove that K∩S2 = 0, let x ∈K∩S2, then x = s + 𝜑(s), s∈ 𝜑−1(S2) 

≤ S1, x ∈ S2 and  φ(s) ∈S2 implies s ∈S2 (S2 is subtractive since it is direct summand), so 

s ∈S1∩S2, then s = 0 and x = 0 + φ(0) = 0. 

Now, let x ∈ φ−1(S2)∩K then x ∈ 𝜑−1(S2) and x + 𝜑(x) ∈K, but x ∈K, by subtractive property 

𝜑(x) ∈K, hence φ(x) ∈K∩S2 = 0, therefore 𝜑(x) = 0 and x ∈ker 𝜑, so φ−1(S2)∩K⊆ ker 𝜑, but 

ker 𝜑 ⊆ φ−1(S2). On other hand, x ∈ker 𝜑, then  𝜑(x) = 0 and  x+ 𝜑(x) ∈ K, then φ−1(S2) ∩K 

= ker 𝜑. 
For (2), since ker(𝜋 | 𝐾) = ker 𝜋 ∩ K = S2∩K = 0, therefore 𝜋 | 𝐾 is monomorphism.      □   

In the next, we give a characterization of a complement subsemimodule, in certain cases. 

 

Lemma 2.13:  Let S = S1⨁ S2 be a T-semimodule (with injective hull) and K is a 

subsemimodule of S, then K is a complement of S2 in S if and only if K = {s1+𝜑(s1): s1 ∈
𝜑−1(S2)} for some 𝜑 ∈ Hom(S1, E(S2)). 

Proof: Let K be a complement of S2 in S, and π𝑖: S→Si, where (i = 1, 2) be the natural 

projections, since ker(𝜋 1| 𝐾) = ker(𝜋 1)∩K = S2∩K = 0, then 𝜋 1| 𝐾  is a monomorphism, 

consider  the diagram as follow: 

 
Where i the inclusion map, since E(S2) is injective, then there exists 𝜑 ∈ Hom(S1, E(S2)), such 

that 𝜑(𝜋 1| 𝐾) = i( 𝜋 2| 𝐾). Let x ∈K, then x = 𝜋1(x)+ 𝜋2(x), since 𝜑(𝜋 1 (x) = i(𝜋 2(x) ) = 𝜋 2 

(x), then x = 𝜋1 (x)+𝜑(𝜋 1 (x)) and x ∈{s1+𝜑(s1): s1 ∈ 𝜑−1(S2)}, hence K⊆ {s1+ 𝜑(s1):s1 ∈
𝜑−1(S2)} and {s1+ 𝜑(s1):s1 ∈ 𝜑−1(S2)}∩S2 = 0 (note that S2 is a summand of S, hence 

subtractive), since K is a complement of S2 by assumption then K = {s1+𝜑(s1):s1 ∈ 𝜑−1(S2). 

Conversely, suppose 𝜑 ∈ Hom(S1, E(S2)), and K = {s1+ 𝜑(s1):s1 ∈ 𝜑−1(S2)}, then K≤ S and 

K∩ S2 = 0. Now suppose 𝐿 ≤S and L∩ S2 = 0, and K⊆L. Let u∈L\K, then u=𝜋1(u)+ 𝜋2(u) 

and 𝜋2(u) ≠ 𝜑(𝜋1(u)), now 𝜑(𝜋1(u) ∈E(S2) and 𝑆2 ≤𝑒 E(S2) implies there exists 𝑟 ∈T such 

that 0 ≠ r 𝜑(𝜋1(u)∈ 𝑆2, therefore  𝜋1(ru) + 𝜑(𝜋1(ru)∈K, while  ru =  𝜋1(ru) + 𝜋2(ru). 

Hence, ru + 𝜑(𝜋1(ru) = 𝜋1(ru) + 𝜑(𝜋1(ru) + 𝜋2(ru), where ru + 𝜑(𝜋1(ru) ∈L + S2 , since L + 

𝑆2 is direct sum then ru + 𝜑(𝜋1(ru) [where ru ∈L and 𝜑(𝜋1(ru) ∈S2], has unique 

representation then 𝜋2(ru) = 0, hence ru + 𝜑(𝜋1(ru) ∈ L+0, therefore φ(𝜋1(ru)) = 0, but this 

is a contradiction, then L= K and K is a complement of S2 in S .     □ 

 

Proposition 2.14: Any direct summand of a CS-semimodule is CS-semimodule. 

Proof: Let C be a direct summand of S, then S = C ⨁ D, for some D≤ S. Let N≤c C, then 

N∩D = 0 and C ≤c S, by (Lemma 2.8) N ≤cS, therefore N is direct summand of S (since S is 

CS-semimodule), S = N ⨁ 𝑁′ for some 𝑁′ ≤S, by Modular Law C = N ⨁(C∩𝑁′), N is direct 

summand of C, hence C is CS-semimodule.     □ 

 

Proposition 2.15: Let S = S1⨁ S2 be a T-semimodule(with injective hull) then the following 

statements are equivalent:  

1. S is CS-semimodule. 

2. ∀ φ ∈ Hom(S1, E(S2)), the subsemimodule {s1 + 𝜑(s1): s1∈ φ−1(S2)} is CS-semimodule 

and  a direct summand. 
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Proof: Suppose φ:S1→E(S2) and let K = {s1+φ(s1): s1 ∈ φ−1(S2)}≤S, by (Lemma 2.13) K is a 

complement of S2 in S, since S is CS-semimodule and by (Proposition 2.10) K is a CS-

semimodule and direct summand of S.  

Conversely, let N ≤c S. If N∩S1 = 0 then by (Lemma 2.13), N = {x+φ(x): x ∈ φ−1(S1)} for 

some φ ∈ Hom(S2, E(S1)) and by assumption it is a direct summand. If N∩S1 ≠ 0, there exists 

a closed submodule K of N such that N∩S1 is essential in K. Clearly K∩S2 = 0. Let π𝑖:S→Si, 

where (i = 1, 2) be the natural projections, then π1|K is a monomorphism and there exists φ ∈ 

Hom(S1, E(S2)) such that φ(π1(k)) = π2(k) for all k ∈K.  

If P = {s1+φ(s1): s1 ∈ φ−1(S2)}≤ S, then by (Lemma 2.13) P is a complement of S2 in S, and it 

is a direct summand of S by assumption. Note that if k ∈K, then k = π1(k)+ π2(k) 

= π1(k)+ φ(π1(k)) ∈P, that is K≤P. Since P is CS-semimodule (by assumption) K is a direct 

summand of P, hence K is a direct summand of S, say S = K ⨁  𝐾′, and by Modular Law we 

have N = K⨁  N∩K'. Now, N∩𝐾′ ≤c S, clearly (N∩𝐾′)∩S1 = 0 by an argument similar to the 

above N∩𝐾′ is a direct summand of S and hence also of 𝐾′. It follows that N is a direct 

summand of S. Thus S is CS-semimodule.  □  

 For the next result the following lemmas are required.  

 

Lemma 2.16: If 𝛼 ∈Hom(S, 𝑆′) is an isomorphism and N≤𝑒S, then 𝛼(N) ≤𝑒 𝑆 ′.  
Proof: Let K≤ 𝑆′ ∋ 𝛼(N) ∩ K = 0, then 𝛼−1(𝛼(𝑁)∩K) = 0, thus N∩𝛼−1(K) = 0, therefore 

𝛼−1(K) = 0, and K = 0.      □ 

 

Lemma 2.17: If S ≅  𝑆′, then S is CS-semimodule if and only if 𝑆′ is CS-semimodule. 

Proof: Immediately by definition and Lemma 2.16.      □ 

 

Proposition 2.18: If S = S1⨁ S2 is a CS–semimodule (with injective hull), S1 and S2 are 

relative injective semimodules and 𝜑 ∈ Hom(S1, E(S2)), then  𝜑 −1(S2)  is CS–semimodule. 

Proof: Let N ={x + 𝜑(x): x ∈  𝜑 −1(S2)}, by (Lemma 2.13) N is a complement of S2, also by 

(Proposition 2.10) N is CS-semimodule, let 𝜋1|N = α, then α:N→ S1 is a monomorphism. Let 

y ∈ α(N), then y = 𝜋1(n), for some n ∈N [since n = x + 𝜑(x), then 𝜋1(n) =  𝜋1(x) ∈  𝜑 −1(S2)], 

n = 𝜋1(n) + 𝜋2(n) = 𝜋1(x) + 𝜋2(n) = x + 𝜑(x), then 𝜋1(x) = x and 𝜋2(n) = 𝜑(x), hence y ∈
 𝜑 −1(S2), therefore α(N) ⊆  𝜑 −1(S2). If x ∈  𝜑 −1(S2), then  x∈ S1 and 𝜑(𝑥) ∈ S2, but x 

+ 𝜑(x) ∈ N, therefore α (x)+α(𝜑(x))  ∈ α(N), then α(x) = x ∈α(N), hence α(N) = 𝜑 −1(S2), 

hence 𝛼′:N→ 𝜑 −1(S2) is an isomorphism. Since N is CS-semimodule by (Lemma 

2.17),  𝜑 −1(S2)  is CS-semimodule.       □       

3. Direct Sum and Direct Summand of CS-Semimodule 

The direct summand and direct sum of CS-semimodule will be studied in this section as well 

as conditions that ensure a subsemimodule of CS-semimodule to be CS-semimodule and 

supply related properties of CS-semimodule property.  

 

Proposition 3.1: Let S = S1⨁ S2 be a T-semimodule, where S1 and  S2 are CS-semimodules, 

then S is CS-semimodule if and only if every closed K≤S with K∩S1 = 0 or K∩S2 = 0 is a 

direct summand. 

Proof: (⟹) It is proved by (Proposition 2.3). 

(⟸) Let B≤𝑐  S, then either 𝐵 ∩ S1 = 0, then by assumption B is direct summand of S. Or 𝐵 ∩
𝑆1 ≠ 0, then there exists D such that B∩S1 ≤𝑒D ≤𝑐  B by (Remark 2.9), then D∩S2 = 0. Note 

that D≤𝑐  S  by (Lemma 2.8), then by assumption, D is a direct summand of S, that is, S = 

D⨁𝐷′ for some 𝐷′ ≤S, by Modular Law B = D⨁(B∩𝐷′), but (B∩ 𝐷′) is closed in S, then 

(B∩ 𝐷′)∩S2 = 0, also by assumption B∩𝐷′ is a direct summand  of 𝐷′, then 𝐷′= (B∩D') ⨁ 𝐷′′ 
for some 𝐷′′ ≤ S, so S = D⨁ (B∩𝐷′) ⨁𝐷′′ = B⨁𝐷′′, therefore B is a direct summand  of S 

and S is CS-semimodule.      □ 
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Lemma 3.2: Let S = S1⨁ S2, be a T-semisubtractive T-semimodule then S1 is S2-injective 

implies for every subsemimodule C of S with C∩S1 = 0, there exists a subsemimodule 𝑆′ of S 

such that S = S1⨁ 𝑆′, C≤ 𝑆′. 
Proof: Assume that S1 is S2-injective, let πi: S→Si, where (i = 1, 2) be the natural projections, 

let C≤ S with C∩S1 = 0, consider the diagram where α = π2| 𝐶 and 𝛽 = π1| 𝐶, α is a 

monomorphism, by assumption there exists f: S2→S1∋ fα = 𝛽. 

 
Define 𝑆′= {f(a) + a: a ∈S2}, then 𝑆′ ≤S. For c ∈C, c = π1(c) + π2(c) = f(π2(c)) + π2(c) ∈ 𝑆′, 
so C ≤ 𝑆′. For a ∈ S, a = π1(a) + π2(a), if  π1(a) = f(π2(a)), then a ∈ C ≤ 𝑆′ ≤ S1⨁ 𝑆′. If 
π1(a) ≠ f(π2(a)), then by semisubtractive property either π1(a) + h = f(π2(a)) or π1(a) = 

f(π2(a)) + h for some h ∈S (in any case h ∈S1, since S1 is a direct summand, hence 

subtractive). So, either a + h = π1(a) + h + π2(a) = f(π2(a)) + π2(a) ∈ 𝑆′ ≤S1 + 𝑆′, hence 

a ∈S1 + 𝑆′. Or a = π1(a) + π2(a) =  f(π2(a)) + h + π2(a) = h + f(π2(a)) + π2(a) ∈S1 + 𝑆′. 

Therefore S = S1+ 𝑆′. On other hand, if a ∈S1∩𝑆′ then a ∈S1 and a = f(b) + b, for b ∈S2, 

therefore 0 =  π2(a) = π2(f(b)) + π2(b) = 0 + π2(b) = π2(b)  and  π1(a) = π1(f(b)) + π1(b) = 0,  

then a = 0, hence S1∩𝑆′= 0 and S = S1⨁ 𝑆′.      □ 

For the following proposition, we give a condition of the direct sum of CS-semimodules to be 

CS-semimodule.       □ 

 

Proposition 3.3: Let S = S1⨁S2 be a T-semimodule, where S1 and S2 are relative injective 

semimodules then S is CS-semimodule if and only if S1 and S2 are CS-semimodule.  

Proof: (⟹) It is proved by (Proposition 2.14).  

(⟸) Assume that   S1 and S2 are CS-semimodule and Si is Sj injective for (i, 𝑗=1, 2 and i≠ 𝑗),  

let K ≤𝑐S and  K∩S1 = 0, by (Lemma 3.2) there exists 𝑆′ ≤S such that S = S1⨁ 𝑆′ and  K≤ 𝑆′, 
it is  clear that 𝑆′ ≅ 𝑆2 and hence 𝑆′ is CS-semimodule by (Lemma2.17). On the other hand,  

K ≤𝑐 𝑆′(since it is closed in S) hence K is a direct summand of 𝑆′, therefore K is a direct 

summand of S, similarly for any subsemimodule H of S with H∩S2 = 0, is a direct summand 

of S, therefore by (Proposition 3.1), S is CS-semimodule.       □ 

 

Proposition 3.4: Let S = S1⨁S2 be a T-semimodule, if S1 is CS-semimodule and S2 is S1 

injective then every closed subsemimodule K of S with K ∩ S2 = 0 is a direct summand of S. 

Proof: Let K≤𝑐 S with 𝐾⋂𝑆2 = 0, since S2 is S1 injective by (Lemma 3.2) there exists 𝑆′ ≤
𝑆 such that 𝐾 ⊆ 𝑆′ and S = 𝑆′⨁ S2, therefore 𝑆′ ≅ 𝑆1, since 𝑆1 is CS-semimodule, then 𝑆′ is 

CS-semimodule and K is a direct summand of 𝑆′ (say 𝑆′=K⨁ 𝐾′) hence S =(K⨁ 

𝐾′)⨁S2=K⨁(𝐾′⨁S2), that is, K is a direct summand of S, hence S is CS-semimodule.       □  

For determining under which condition a subsemimodule has a unique complement see the 

following. 

 

Lemma 3.5. Let S = S1⨁S2 be a T-semimodule (with injective hull), and 𝜑 ∈ Hom(S1, E(S2)). 

If Hom(S2, E(S1)) = 0, then  S2 is a  unique complement of N = { x+ 𝜑(x): x ∈ 𝜑 −1(S2)}. 

Proof: Let Y≤S, with Y∩N = 0. Note that ker(𝜑) ⊆N. Let Y∩𝜑−1(𝑆2) = K, if K ≠ 0, then φ |K 

is a monomorphism [since ker(𝜑 |K) = ker 𝜑∩K ⊆N∩K⊆ N∩Y = 0]. Consider the diagram:   
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Since E(S1) is injective, there exists 0 ≠ α ∈ 𝐻𝑜𝑚(𝑆2, 𝐸(𝑆1)), but this contradicts the 

assumption, then K = 0, therefore 𝑌 ∩ 𝜑−1(𝑆2) = 0, but 𝜑−1(𝑆2) ≤𝑒 𝑆1, then Y∩S1 = 0, 

hence  𝜋2 |Y  is a monomorphism and  𝜋1(𝑌) = 0. Therefore, Y⊆S2, and S2 is a unique 

complement of N.     □ 

For a specific purpose, we derive a new lemma from Proposition 2.13 that will be more 

generality as follows: 

Lemma 3.6: Let S = S1⨁ S2 be a T-semimodule (with injective hull), and A≤ S with A∩S2 = 0, 

then A ≤𝑐S if and only if A = {x+ 𝜑(x): x ∈X} where X ≤𝑐  𝜑 −1(S2), for some 𝜑 ∈ Hom(S1, 

E(S2)). 

Proof: (⟹) Let 𝜋𝑖:S→Si, where (i= 1, 2) be the natural projections, since A∩S2 = 0, then 

𝜋1
′= 𝜋1|A :A→S1 is a monomorphism, hence there exists 𝜑 ∈ Hom(S1, E(S2)) such that 

 𝜑(𝜋1
′(a)) = 𝜋2

′(a)  for all a ∈A, where  𝜋2
′= 𝜋2|A, then 𝜑(𝜋1(a)) = 𝜋2(a).  

Hence, for each a ∈A, a =  𝜋1(a) +  𝜋2(a) =  𝜋1(a) + 𝜑(𝜋1(a)), so A = {x+𝜑(x): x ∈  𝜋1(𝐴)}, 

note that 𝜋2(A) =  𝜑(𝜋1(A)) ⊆S2, hence 𝜋1(A) ≤  𝜑 −1(𝜋2(A)) ≤ 𝜑−1(S2), if 𝜋1(A) ≤𝑒 𝑌 ≤
𝜑−1(S2), then A + S2≤𝑒 𝜋1

−1(Y), but S2 ≤ 𝜋1
−1(Y), therefore A≤𝑒 𝜋1

−1(Y), since A is closed 

in S, then A = 𝜋1
−1(Y), and 𝜋1(A) = Y, thus 𝜋1(A) ≤𝑐  𝜑−1(S2).  

(⟸) if A = {x+𝜑(x): x ∈X} and X≤𝑐 𝜑−1(S2), it is clear that A≤N = {x+𝜑(x): x ∈ 𝜑−1(S2)}, 

and that A has a proper essential extension in N if and only if X  has a proper essential 

extension in 𝜑−1(S2), since X is closed in 𝜑−1(S2), it follows that A≤𝑐N, then A≤𝑐S.     □ 

 

Lemma 3.7: Let S = S1⨁S2 be a T-semimodule (with injective hull), where S1 and S2 are 

subsemimodules of S.  If  𝑆2 is S1-injective then any closed subsemimodule A in S with A⋂S2 

= 0 must have the form A = {𝑥 + φ (𝑥): 𝑥 ∈ 𝑋}, where X is closed subsemimodule of S1 and 

𝜑 ∈ Hom(S1, E(S2)). 

Proof: Let A be a closed subsemimodule in S with A⋂S2 = 0, then by (Lemma 2.13) A = 

{x+𝜑(x): x ∈X}, where X is closed subsemimodule of  𝜑 −1(𝑆2) , for some 𝜑 ∈ Hom(S1, 

E(S2)). But  𝜑 −1(𝑆2)  ≤e S1, so X ≤𝑐S1.     □ 

 

Lemma 3.8: Let S = S1⨁S2 be a T-semimodule (with injective hull), where S1 and S2 are 

subsemimodules of S. If 𝜑−1(S2) = S1 for each 𝜑 ∈ Hom(S1, E(S2)),  then  S2 is S1-injective. 

Proof: Consider the diagram below, assume K is a subsemimodule of S1 in S where i is the 

inclusion map, f is any homomorphism j is the inclusion map. 

 

 
 

Since E(S2) is injective there exists 0 ≠ 𝜑 ∈ 𝐻𝑜𝑚(𝑆1, 𝐸(𝑆2)) such that 𝜑i = j. Since 𝜑−1(S2) 

= S1, then 𝜑(S1) ⊆ S2 and 𝜑 ∈ 𝐻𝑜𝑚(𝑆1,  𝑆2), therefore S2 is S1-injective.     □ 

In the following, the condition of Proposition 3.4 gives extra results. 
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Proposition 3.9:  Let S = S1 ⨁  S2 be a T-semimodule (with injective hull), and Hom(S2, 
E(S1)) = 0,  then   S1 is CS-semimodule and S2 is S1–injective if and only if every closed  

subsemimodule  K  of  S with  K∩ S2 = 0 is a direct summand of S.  

Proof: (⇒) It is proved by (Proposition 3.4). 

(⇐) Suppose K≤𝑐 S1, then K∩S2=0 and K≤𝑐 S by (Lemma 2.8). By assumption K is a direct 

summand of S, say S=K⨁ K', hence S1= K⨁ K'∩S1, therefore K is a direct summand of S1, 

and S1 is CS- semimodule. 

Now, let 𝛼 ∈ 𝐻𝑜𝑚(𝑆1, 𝐸(𝑆2)) be arbitrary, then by (Lemma 2.13) L={x+ 𝛼(x): x∈

𝛼 −1(S2)}is closed in S and it is a complement of 𝑆2, by assumption it is a direct summand of  

S If 𝜋1is the natural projection of S= S1⨁S2 onto S1, then y∈L implies y= x+ 𝛼(x) for some x∈
𝛼 −1(S2) and 𝜋1(y) = 𝜋1(x)=x, that is, 𝜋1(L)⊆  𝛼 −1(S2). If x∈ 𝛼 −1(S2), then 𝜋1(x)=x and 

x+ 𝛼(x) ∈L hence x=𝜋1(x)= 𝜋1(x+ 𝛼(x)) ∈ 𝜋1(L), that is, 𝜋1(L)= 𝛼 −1(S2). Since 𝜋1(L) is 

closed in S1 and 𝛼 −1(S2) is essential in S1, it follows S1= 𝛼 −1(S2). Therefore, by (Lemma 

3.8), S2 is S1-injective.       □ 

Corollary 3.10:  Let S = S1⨁ S2 be a T-semimodule (with injective hull), and Hom(S2, E(S1)) = 

0, then S is CS if and only if S1 and S2 are CS-semimodule and S2 is S1–injective . 

Proof: (⇒) By (Propositions 2.14), both S1 and S2 are CS- semimodules, then by (Proposition 

3.4) and (Proposition 3.9) S2 is S1–injective. 
(⇐) This is proved by (Propositions 3.9, 2.13 and 2.15).       □ 
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