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Abstract 
 

Since shape constrains limit of the degree of approximation, we will relax the 
constraints of shape in small parts of the interval  1,1I  and approximate a function f  in 

the k
pL  space,  p0 , 2,1,0 ork  , which contains all functions pLf   with  

p
k Lf  , by an 

intertwining (co-onesided) pair of splines and/or polynomials, to get global estimates in 
terms of Ditzian-Totik modulus of smoothness. 

We begin with improving Whitney's Theorem for onesided approximation by using 
Ditzian-Totik modulus of smoothness instead of  modulus, to get less degree of 
approximation of the function  ILf p  conditioning that   0fr

 . 

 
 
Keywords: Approximation theories, constraints relaxation, splines 

 
1.  Introduction and Main Results 
Throughout this article, we use the following notations from (Hu et. al., 1997); 

Let   0,:11:|,,: 12101   syyyyyyyY ssss  . We denote by  sY0  the set of all 

functions f  such that     01   xfks  for   skyyx kk ,0,, 1   . 
That is, those that have  s0  sign changes at the points in sY  and one nonnegative near 1. In 

particular,  0
00 Y  denotes the set of all nonnegative functions on  1,1 . Functions f  and g  which 

belong to the same class  sY0  are said to be copositive. 

Copositive approximation is the approximation of functions f  from  sY0  class by 
polynomials and/or splines that are copositive with f. For  1,1 pLf , let  

pnppn PffE
nn

 inf: , 

denotes the degree of unconstrained approximation. 
The best onesided approximation of f  by means of algebraic poly-nomials nnP   in pL -

metric is given by         11,,:inf:
~

 xxQxfxPandQPQPfE nppn . 

A natural extension of (co)positive and onesided approximations is the concept of so-called 
intertwining (co-onesided) approximation. 
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Definition 1.1. For the set   0,:11:|,,: 12101   syyyyyyyY ssss  , the best 
intertwining polynomial approxima-tion of a function  1,1 pLf is given by 

        11,,:inf:
~

 xxQxfxPandQPQPfE nppn . 

We call  QP, an intertwining pair of polynomials for f  with respect to sY  if  sYQffP 0,  . 
Clearly, in the case 0s , the above definition becomes the definition of the best onesided 

polynomial approximation    pnpn fEYfE
~

,
~

0   

Denote by  
 IL

r
hthpr

p

ftf  0sup:, , the classical modulus of smoothness, where 

    























  

ir
h

rxf
i

r
f

r

i

ir
h 2

1:
0

. 

The Ditzian-Totik modulus of smoothness which is defined for such an f  as follows 

 
 IL

r
hthpr

p

ftf  0sup:, . 

There were other attempts made, the most notable being the works of Sendov and Popov, who 
gave the so called  modulus, an averaged modulus of smoothness, defined for bounded measurable 
functions on  ba,  by      ILrpr

p
tfJtf ,,:,,   , where 
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,
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:,sup:,,  is the r-th local modulus of smoothness of f. 

Throughout this article, we use the following notations from (Bhaya, 2003) 

Let 1,1 11   nxx  and for each nj ,,1,0   set 
 njxx njj cos:: , 

, 
 1,:  jjj xxI

, 

jjjj xxIh  1::
 and   22 11: nnxxn  . 

At first, we have to give some estimates which formulate the relations between the above 
measures as follows      prprpr tftftf ,,,   ,  p1 , and    prpr tftf ,,   ,  p0 . 

First of all, we'll introduce a proof for Whitney's theorem for onesided approximation in 
 1,1pL  in Theorem I, which includes an equivalence between onesided approximation and Ditzian-

Totik modulus of smoothness, taking into consideration the counter example for this theorem, whereas 
the authors in (Hu et. al., 1997), considered that only  modulus is the correct modulus for the 
equivalence between onesided approximation and some modulus, which was proved in (Hu, 1995) by 
Hu, for a continuous function. It was stated in (Hu et. al., 1997) that “We also remark that is the 
“correct” modulus in      prpn nfrCfE 1,

~   ,  p1 , i.e., it can't be replaced by   or  , since the 

estimate  
ppn fcfE 

~ , certainly cannot be correct for all 
 1,1 pLf

, p . To see this, it is sufficient 

to consider the function f  such that   10 f  and   0xf , 0x , then 0
p

f  and   0
~

fEn ”. We can 

avoid the above counter example simply by assuming that 0
p

f , or more generally   0, tfr
 . 

 
Theorem I. (Whitney's Theorem for Onesided Approximation) 

For  1,1 pLf ,   0, Ifr
 , we have 

prpr IfwfE ),(~)(
~

1


  (1) 

Now, we get the way to approximate a differentiable function in  1,1pL , by an intertwining 

pair of splines by dividing the interval  1,1 , into small subintervals, each one contains at least four 
knots. 

The following theorem is proved in (Hu et. al., 1997), by Hu, Kopotun and Yu in the space 
 1,11 pW  for the case  p1  in terms of  modulus of smoothness. 
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Theorem II. (Intertwining Spline Approximations,  p0 ) 

Let  1,11  pLf  and let   0,11|,, 12101   syyyyyyyY ssss   and let 2r  be an integer. 

Let nT  be a given knot sequence such that there are at least  214 r  knots in each open intervals 

 1, ii yy , 1,,2,1  sj  , then there exists an intertwining pair of splines  SS ,  of order r  on the knot 

sequence nT , (i.e.  1,1, 2  rCSS  and  sYSffS 0,  ) such that, for 1,,2,1  ni   

piiriILp
fwICSS

i

)I,I,(1
2

)(
 

  (2) 

where C  is a constant depending on r  and on the maximum ratio 
i

in
i I

I 11
0max: 

  and iI  is an interval 

such that     22 1616
,




ririii zzI I . 

Consequently, if in addition  1,12  pLf , then 

piiriILp
IIfwICSS

i

),,(2
3

)(
 

  (3) 

The proof of the above theorem also yields a more general result on onesided spline 
approximation. 

Corollary III. Let  1,1 pLf ,  p0 , and let 2r  be an integer, then there exist splines S  

and S  of order r  on the knot sequence nT  , such that        1,1,  xxSxfxS , and for 1,,2,1  ni   

piirILpnn IIfCwSS
i

),,(
)(

  (4) 

where C  is a constant depending on r  and on the maximum ratio 
i

in
i I

I 11
0max: 

  and iΙ  is an interval 

such that     22 1616
,




ririii zzI Ι . 

The proof of the above corollary follows directly from the proof of theorem II which will be 
shown in Section 3, by omitting the inequality (15). Also, we'll use the previous theorem and its 
corollary to prove the following two theorems about onesided and co-onesided approximation, 
respectively, for large n. 
 
Theorem IV. (Onesided Polynomial Approximation in  1,1pL ,  p0 ) 

Let  1,1 pLf  and Nr . Then for every 1 rn , there exist polynomials nQP , , such that 

      11,  xxQxfxP  and 

prp
nfwrCQP ),()( 1   (5) 

 
Theorem V. (Intertwining Polynomial Approximation) 

Let  1,11  pLf ,  p0 , and let  12101 11|,,  ssss yyyyyyyY  , 0s . Then 

prpsn nfwnsrCYfE ),(),(),(
~ 11     (6) 

Also, there exists an intertwining pair of polynomials nQP ,  such that 

prp
nfwnsrCQP ),(),( 11     (7) 

Moreover, if  1,12  pLf , then 

prpsn nfwnsrCYfE ),(),(),(
~ 11     (8) 
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2.  Auxiliary Lemmas 
We begin with some properties of D-T modulus of smoothness which are needed in the proofs of our 
main results. Note that the first lemma is valid for the range  p0  which is proved by Ditzian and 
Totik (Ditzian and Totik, 1978) for  p1  and by Ditzian, Hristov and Ivanov in their paper (Ditzian 
et. al., 1995) for the other cases 
 

Lemma 2.1. For pLf  ,  p0 , we have prpr tfctf ),(),(    , for rm  . 

Another property which combining r  and r  is proved by Petrushev and Popov for  p1  
in (Petrusher and Popov, 1987) and by Devore, Leviatan and Yu for 10  p , in (DeVore et. al., 1992) 
is the next. 

Lemma 2.2. For pLf  ,  p0 , Nr , ,     




 






1

0

1,,,
  

n

i

p

pr
p

pijir nfrpcIf  . 

Lemma 2.3. (Whitney's Inequality) (Burkill, 1952) Let  ILf p ,  p0 . Then there exists 

nnQ  , a polynomial of degree n  such that    
prILn IIfCQf

p
,,  for nr  . 

Lemma 2.4. (Kopotun, 1997) For any polynomial nnQ  ,  p0  we have 

   ILnILn
p

pp
QQJ ~

1 . 

Lemma 2.5. (Sendov and Popov, 1988) If f  is bounded measurable function on   baba ,,, , 

then       


n

i i

b

a
xfnabdxxf

1

1  where    niabaxi 212  . 

The next lemma is proved in (Hu, 1995) by Hu for a continuous function, we can get a similar 
result for our case. 

Lemma 2.6. For  1,1 pLf ,  p0 , we have        fEfEfE nnn 2
~ . 

Lemma 2.7. For  1,1 pLf ,  p0 , we have      pnpnpn fEfEfE 2
~

 . 

Proof 
Denote by P

~  and Q
~  be the best onesided approximation, then by lemmas (2.4), (2.5) and (2.6), 

we have 
p

p

p
pn QPfE

~~
)(

~
  

p
n fEc  )(

~  
p

n fcE  )(2  
p

Pfc


 2  
p

x
xPfsub 




 


))((2

1
 

p
i

n

i

xPfncn ))((2
1

1  


  

p

p
Pfcn  2  
p
pn fnE )(2  (9) 

where P  is the best approximation of f . □ 

Also, it is clear that  ),(),( tftf rpr  . But the next lemma shows that pr tf ),(  and ),( tfr  

are equivalent. Namely we prove the following result; 
Lemma 2.8. For  p0 ,  ILf p , we have   prr IfpcIf ),(),(   . 
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Proof 
Denote 10,  niIi  a partition of the interval I . Let niQ   be the best polynomial 

approximation of f  on iI , satisfying Whitney's inequality, such that 

)()()( ),()(
ipipip ILirILiILn IfcQffE   (10) 

For rn  , then by definitions, lemmas (2.4), (2.2) and (2.7), 
p

L

r
hIh

p
Lr

I
I

fsubIf
)(
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),(),( 0
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),( 1   (11) 

for iP
~  and iQ

~  be the best onesided approximation in  ip IL ,  p0 , of degree less than n . □ 

The following Lemma proved by Devore, Leviatan and Yu (DeVore et. al., 1992) for the case 
10  p , and by Ditzian and Totik (Ditzian and Totik, 1978) for the other cases, that is,  p1 . 

Lemma 2.9. For  pn fE  with  p0 , we have for all      prpn nfprcfErn 1,,,   . 

The auxiliary lemma below allows us to blend local overlapping polynomials into a smooth 
spline with the same approximation order. 

Lemma. 2.10. (Beatson Lemma) (Beatson, 1982) Let 2n  be an integer and  212  rd . Let 

   iitT  be a strictly increasing knot sequence with at 0 , btd  . Let P , Q  be two polynomials of 

degree less than r . Then there exists a spline  TS r  such that 
a.  xS  is a number between  xP  and  xQ , for all  bax , . 
b. PS   on  a,  and QS   on  ,b . 

The following lemma, which is proved in (Hu et. al., 1997) by Hu , Kopotun and Yu plays a 
main role in this chapter. 

Lemma 2.11. Let p , and let  xS  be a spline of an odd order  12  mrr  on the knot 
sequence     sYJjj njx


 cos , where  sYcn   is such that there are at least four knots jx  in each 

interval  1, ii yy , si ,,0  , and      sixyxjjnYJ jjjs   1somefor |1,\,,1 1 . 

Then there exists an intertwining pair of polynomials  ncPP 21,  for S  with respect to sY  

such that 

 



 pIISEsrCPP

n

j

p
pjjr

pp

p
0,),(),,(

1

1
1121   (12) 
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We need finally, for our proofs, the next property of Ditzian-Totik modulus of smoothness, 
which is proved in (Ditzian and Totik, 1978) by Ditzian and Totik, for  1,1pL ,  p1 . Also, Devore, 

Leviatan and Yu (DeVore et. al., 1992) showed that it is valid for 10  p  as well. 

Lemma 2.12. For  1,1 pLf ,  p0 , we have        1,1
1

1,1 , 


 
pp LrLn nfCfE  . 

 
 
3.  Proof of the Main Theorems 
3.1. Proof of Theorem I 

The lower bound is clearly valid from definition. 
For the upper bound, denote by P

~  and Q
~  best onesided approximation of f  by polynomials of 

degree less than r  from above and below in the space pL . Then by definitions and lemmas (2.4), (2.12) 

and (2.8), we have 

  QPIQPfE p
p

pr
~~~~

)(
~ 1

1  

 )(
~

1

1

fEI rp  

 )(2 1

1

fEI rp  

 ),(2
1

IfI rp
  

.),( pIfC r
  (13) 

 
3.2. Proof of Theorem II 

Let  212:  rd ,   ddnm /1:   and dii zz : . Note that 1: iz  for 0i  and 1:iz  for mi  . We first 

construct overlap-ing polynomial pieces of degree less than r  on the coarser partition  m
iin zT 0:  . 

We call the interval  1, iii zzI  contaminated if 1 iii zyz  for some si Yy  . By assumption, 

there exists exactly one iy  in each of the contaminated interval 
jmI , sj ,,1  and there is at least one 

non-contaminated interval between 
jmI  and 

1jmI , that is 12  jjj mmm , 1,,1  sj  . 

If 21   jj mm  (i.e., if there is only one non-contaminated interval between 
jmI  and 

1jmI ), then 

the following construction is not needed, and the next two paragraphs can be skipped . 
In this case 12  jj mm , by Whitney's Theorem for Onesided Approximation (Theorem I) on 

each of the interval  2, ii zz , 2,,1 1  jj mmi  , there exist two polynomials iP  and iQ  of degree less 

than r  such that      xQxfxP ii   for all  2,  ii zzx  and 

    .),,,( 2, 2
piiirZZLii zzIfQP

iip




  (14) 

We define ip  and iq  on  2, ii zz  by ii Pp :  and ii Qq :  if   01   js , and ii Qp :  and ii Pq :  if 

  01   js . 

Hence        01   xfxpi
js ,        01   xfxqi

js  and 

   22 ,, 


iipiip zzLiiZZLii QPqp  

  piiir zzIfc ),,,( 2   

  piiir zzIfc   ),,,( 21
  (15) 

where, in this step we have used lemma (2.1). 
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We should emphasize that when we speak of a polynomial on an interval we mean the 
restriction to the interval; hence it is considered undefined outside. Near each point iy , we construct 
local polynomials differently. More precisely, we approximate f   on  

21
,

 jj mm zz , sj ,,1 , from 

above and below by two polynomials 
jmP

~  and 
jmQ

~  of degree less than 1r . Then      xQxfxP
jj mm

~~
  

for all  
21

,



jj mm zzx  and 

    .),,,(~~
211

, 21
pmmmr

ZZL
mm jjj

jmjmp
jj

zzIfcqp  


  (16) 

Define 
jj mm Pp

~
:~   and 

jj mm Qq
~

:~   if   01   js  , and 
jj mm Qp

~
:~   and 

jj mm Pq
~

:~   otherwise. 

It's easy to check that      
x

y
i

t

y
mm

i i
jj

yfdtdttPp
2

211
~  and      

x

y
i

t

y
mm

i i
jj

yfdtdttQq
2

211
~  satisfy the 

inequalities 
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jmjmp

jjj zzL
mmmj QPImc  

  .),,,()( 211

2

pmmmrmj jjjj
zzIfImc     (17) 

Having constructed the overlapping local polynomials which are "intertwining" with f  and 

have the right approximation order, we now blend them for smooth spline approximation S  and S  on 
the original knot sequence nT  with the same properties. If both 1iI  and iI  are non contaminated and 

mi  , then 1ip  and ip  overlap on iI , which contains 1d  interior knot from nT . 

By Beatson's lemma (2.10), there exists a spline iS  of order r  on iI  on these knots connects 

with 1ip  and ip  in a 2rC  manner at dii zz   and )1(1   idi zz , respectively. 

Moreover, the graph of iS  lies between those of 1ip  and ip , and hence 

              xfxSxfxpxfxp iii  sgnsgnsgn 1 , iIx . 
Similarly, considering the overlapping polynomials 1iq  and iq , we construct a spline iS  

satisfying               xfxSxfxqxfxq iii  sgnsgnsgn 1 , iIx . 
Also, 
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.2 11
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p
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By (15), this gives 
  piiirILii zzIfcSS

ip

),,,( 21)(    

  .),,,( 21
2

piiiri zzIfIc    (19) 

The blending of the overlapping polynomial pieces involving contaminated intervals can be 
done in the same way. The spline pieces iS  and iS  thus produced also satisfy the estimate above with a 
slightly larger interval in place of  21,  ii zz  on the right-hand side (  32 ,  ii zz  at worst), which will 

make no difference in the rest of the proof. We define the final spline S  on each iI  as follows; 

If there is only one local polynomial ip  over iI , set S  to this polynomial, if there are two 

polynomials overlapping on iI , then there must be a blending local Spline iS , set S  to iS . It is clear 

from its construction that  sYfS 0  on the whole interval  1,1 , and 2 rCS . Similarly, we 

construct 2 rCS  such that  sYSf 0 . 
Now, recall that all neighboring intervals  1,  iii zzI  in the original partition nT  are comparable 

in size and each interval  )1(,  iddii zzI  contains no more than d such intervals. Therefore, the 

inequality (1) follows directly from (14) and (15). 
Now, (2) is a direct consequence of the previous inequality and (2.1). ■ 

 
3.3. Proof of Theorem IV 

It follows from Corollary III (with  jn xT  ) that there exist splines S  and S  of an integer r  such that 

     xSxfxS  , Ix  and 

.),,(
)( pjjrIL

IIfcSS
ip

  (20) 

Since  xhI jjj ~I  and Ix , then 

pjjrpjjrpjjr IIfEIIfSEIISE ),(),(),( 111111     

pjrIIL
hfcSS

jjp

),(
)( 1




 

.),( pjr hfc   (21) 

Hence 

pjrpjjr hfcIISE   ),(),( 11
  (22) 

And similarly, 
.),(),( 101 pjrpjjr hfcIISE    (23) 

Lemma (2.11) implies the existence of the polynomials 121 ,, PPP  and 2P  of degree less than or 
equal to  nmc  such that      xPxSxP 21  ,      xPxSxP 21   and by using (2.2) we get 
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n
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p hfc   

p
pr nfmpsrc 

 ),(),,,,( 1  (24) 

And similarly, 
p
pr

p

p
nfPP ),( 1

21
   (25) 
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Now, the polynomials 1P  and 2P  are what we are looking for, since 21 PSfSP   and  
p

p

p

p

p

p

p

p
PPSSPPPP 212121   

.),( 1 p
pr nfC    (26) 

Inequality (5) holds and the proof is completed. ■ 
 
3.5. Proof of Theorem V 

Theorem II implies the existence of intertwining pair of spline  SS ,  of order r  for f  on the knot 

sequence  
)( sYJjjx


, recall that    

 sixyxjj

n
YJ

jjj
s 


 1 somefor |1,

,,1

1

  satisfying 

pjjrjIL
IIfIcSS

jp
  ),,(1)(

  (27) 

Where r  is an odd integer such that 21  mrm . 
Now, Since   1~  nxn , therefore 

prp
nfcnSS ),( 1

1
1 


    (27) 

Now, theorem IV implies that there exist intertwining pairs of polynomials  21, PP  and  21, PP  

for S  and S , respectively, satisfying the inequalities (24) and (25) as the previous proof . 
Finally ,  21, PP  is an intertwining pair of polynomials for f  satisfying the inequalities (6), (7) 

and (8). 
 
 
4.  Conclusion 
We have improved some results on onesided and co-onesided polynomial and spline approximation. 
Also, we have relaxed some shape constrains in small parts of the interval ]1,1[ , and approximate a 

function f  in the space ]1,1[r
pL ,  p0 , r  =0, 1, or 2 by co-onesided pair of splines and/or 

polynomials to get global estimates with less degree of approximation in terms of Ditzian-Totik 
modulus of smoothness. 
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