

Journal of Interdisciplinary Mathematics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjim20

Why moduli of *p*-smoothness?

Zainab Abdulmunim Sharba & Hawraa Abbas Almurieb

To cite this article: Zainab Abdulmunim Sharba & Hawraa Abbas Almurieb (2021) Why moduli of *p*–smoothness?, Journal of Interdisciplinary Mathematics, 24:7, 1995-2004, DOI: 10.1080/09720502.2021.1964740

To link to this article: https://doi.org/10.1080/09720502.2021.1964740

Journal of Interdisciplinary Mathematics

ISSN: 0972-0502 (Print), ISSN: 2169-012X (Online)

Vol. 24 (2021), No. 7, pp. 1995–2004 DOI: 10.1080/09720502.2021.1964740

Why moduli of *p*-smoothness?

Zainab Abdulmunim Sharba *
Department of Computer Science
College of Science for Women
University of Babylon
Babylon
Iraq

Hawraa Abbas Almurieb [†]
Department of Mathematics
College of Education for Pure Sciences
University of Babylon
Babylon
Iraq

Abstract

For the increasing importance of discovering new types of moduli of smoothness, more suitable measurements are provided by the moduli of p-smoothness. Measuring fractional smoothness of functions by p-variation is used for many purposes in approximation theory. In this paper, we express $\omega_{k-1/p}(f;\delta)$ in terms of $\omega_{k-1/q}(f;\delta)$ for any 1 < p, $q < \infty$ to get fractional modulus of smoothness of functions with bounded kth p-variation. Also, embedding of the space $V_{p,\alpha}^{(k)}$ is proved with necessity and sufficient conditions.

Subject Classification: 41A65, 46S60.

Keywords: Fractional smoothness, Bounded $(p,\alpha)kth$ – varation, Periodic functions.

1. Introduction

For several decades, function approximation is well studied by using modulus of smoothness, moduli of p-smoothness, with different versions and porpuses, see for examples [1], [4], [6], [8] and [12]. In addition to the p-continuity, moduli of p-smoothness measures fractional

^{*} E-mail: zainab.abd@uobabylon.edu.iq (Corresponding Author)

^t E-mail: pure.hawraa.abbas@uobabylon.edu.iq

smoothness of functions through p-variation. Let g be a real 1- periodic function, $\Pi = [x_0, x_1, \dots, x_n]$ is a partition satisfying $x_0 < x_1 < \dots < x_n$ where $x_n = x_0 + 1$, and p > 1, p' := p/(p-1), and $0 \le \alpha \le 1/p'$. Set $\|\Pi\| = \max(x_{j+1} - x_j)$. For any Π , in [9] the authours defined the $V_{p,\alpha}$ -variation of a function $f : [a,b] \to \mathbb{R}$, as follow

$$V_{p,\alpha}(g;\Pi) = \left(\sum_{k=0}^{n-1} \frac{\left|g(x_{k+1}) - g(x_k)\right|^p}{(x_{k+1} - x_k)^{\alpha p}}\right)^{1/p}$$
(1.1)

The function *g* is said to be bounded *p*–varation iff

$$v_{p,\alpha}(g) = \sup_{\Pi} v_{p,\alpha}(g;\Pi) < \infty, \tag{1.2}$$

Define $V_{p,\alpha}$ to be the set of functions of type g in (1.2). When $\alpha=0$, then $V_{p,0}=V_p$. In order to define the bounded second variation, Poussin modified the partition Π , in [5], to be as follow

$$x_0 < y_1 \le z_1 < x_1 < y_2 \le z_2 < x_2 < \dots < y_n \le z_n < x_n = x_0 + 1.$$
 (1.3)

With extra modifications by the Riesz in [14], Merentes in [10], the second variation functions f that satisfies the finiteness of the following

$$v_{p,1/p'}^{(2)}(g)^{p} = \sup_{\Pi} \sum_{k=0}^{n-1} \left| \frac{g(x_{i+1}) - g(z_{i+1})}{x_{i+1} - z_{i+1}} - \frac{g(y_{i+1}) - g(x_{i})}{y_{i+1} - x_{i}} \right|^{p} \frac{1}{(x_{i+1} - x_{i})^{p/p'}}$$
(1.4)

More extensions are made by [9]. Fist, they used the following partition from [3] and [11] for $k \in \mathbb{N}$.

$$\begin{split} x_0 &= t_{1,1} < t_{1,2} < \dots < t_{1,i} \le t_{1,i+1} < \dots < t_{1,2i} \le \dots \le t_{2,i+1} < \dots \le \dots < t_{3,1} < \dots < t_{j,1} \\ &< \dots < t_{j,i} \le t_{j,i+1} < \dots < t_{j,2i} \le \dots \le t_{m,1} < \dots < t_{m,i} \le t_{m,i+1} < \dots < t_{m,2i} \\ &= x_0 + 1, \end{split} \tag{1.6}$$

The number $V_{v,\alpha}^{(k)}(g)$ is the $(p,\alpha)kth\ p$ – variation of g, and is given by

$$\nu_{p,\alpha}^{(k)}(g;\Pi) := \left(\sum_{j=1}^{m} \left| g[t_{j,k+1}, \cdots, t_{j,2k}] - g[t_{j,1}, \cdots, t_{j,k}] \right|^{p} \right)^{\frac{1}{p}} \cdot \frac{1}{(t_{j,2k} - t_{j,1})^{\alpha p}}, \quad (1.6)$$

where

$$g[t_0, t_1, \dots, t_k] := \sum_{j=0}^k \frac{g(t_j)}{(t_j - t_0) \cdots (t_j - t_{j-1})(t_j - t_{j+1}) \cdots (t_j - t_k)},$$
(1.7)

is the *kth* divided difference. Set the space $V_{p,\alpha}^{(k)}$ $(K \in \mathbb{N})$ to be the space of 1-periodic functions g s.t.

$$v_{p,\alpha}^{(k)}(g) = \sup_{\Pi} v_{p,\alpha}^{(k)}(g,\Pi) < \infty, \tag{1.8}$$

Note that $V_p^{(k)}(g)$ is mentioned to the family of $kth\ p$ – variation of g where $\alpha=0$. Later, Terehin studied the properties of the modulus of continuity of fractional order 1–1/p [15]. With an important property

$$\omega_{1-1/p}(g;nh) \le n^{1/p'}\omega_{1-1/p}(g;h).$$
 (1.9)

A generalization of Terehin definition is essential, to get what is called modulus of fractional p-smoothness of order k-1/p.

$$\omega_{k-1/p}(g;\delta) := \sup_{0 \le \delta \le 1} \omega_{1-1/p}(\Delta_h^{k-1}g;h)$$
 (1.10)

where

$$\Delta_h g(x) = g(x+h) - g(x). \qquad \Delta_h^k g(x) = \Delta_h \Delta_h^{k-1} g(x).$$

In [7], Kolyada defined the family of continuous functions Ω_{α} so to prove that $\Omega_{1/p'}$ is the family of majorants of moduli of p-continuity.

Here, we define the family of k-smooth functions Γ_{α}^{k} by requiring the following conditions for every $\sigma \in \Gamma_{\alpha}^{k}$, we have

- i. $\sigma(0) = 0$
- ii. $\sigma(t)$ is nondecreasing, and
- iii. $\sigma(t)t^{-\alpha/k}$ is nonincreasing

Unlike Kolyada, condition iii, comes to fit the case of study, (p,α) kth p-variation. It is clear that $\Gamma_1^1 = \Omega_1$ is almost like the family of moduli of continuity. $\Gamma_{\alpha}^1 = \Omega_{\alpha}$ is the family of Kolyada, whose family is simply $\Omega_{1/p'}$. For $1 < q < \infty$, and for any $\sigma \in \Gamma_{1/p'}$, construct the sequence similar to [7]

$$\sigma_{n} = \sigma(2^{-n}), \ \overline{\sigma}_{n} = 2^{-1/kq'}\sigma_{n},$$
 (1.11)

By conditions (ii and iii) above, we get that

$$\begin{cases}
\sigma_{n+1} \le \sigma_n \le 2^{-1/kq'} \sigma_{n+1}, \text{ and} \\
\overline{\sigma}_{n+1} \le \overline{\sigma}_n \le 2^{-1/kq'} \overline{\sigma}_{n+1}
\end{cases}$$
(1.12)

But if

$$\lim_{t \to 0+} 2^{-1/kq'} \sigma(t) = \infty, \tag{1.13}$$

then by the constructed sequence of integers $\eta_k = \eta_k(\sigma)$ from [17], [2] and [13] we assume $\eta_1 = 0$, and

$$\eta_{k+1} = \min \left\{ n \in \mathbf{X} : \max \left(\frac{\sigma_n}{\sigma_{n_k}}, \frac{\overline{\sigma}_n}{\overline{\sigma}_{n_k}} \right) \le \frac{1}{4} \right\}, \tag{1.14}$$

so that

$$4\sigma_{n_{k+1}} \le \sigma_{n_k} \quad , \ 4\overline{\sigma}_{n_{k+1}} \le \overline{\sigma}_{n_k} \, , \tag{1.15}$$

Then

$$4\sigma_{n_{k+1}} - 1 > \sigma_{n_k}$$
 , or $4\sigma_{n_k} > \overline{\sigma}_{n_{k+1}} - 1$

By (1.11), we get one of the inequalities

$$\sigma_{n_k} < 8\sigma_{n_{k+1}}$$
, or $\overline{\sigma}_{n_{k+1}} < 8\overline{\sigma}_{n_k}$, (1.16)

Now, for any $\sigma \in \Gamma_{1/p'}^k$ define the set

$$V_{q,\alpha}^{\sigma} = \{ g \in V_{q,\alpha} : \omega_{k-1/q'}(g; \delta) = \mathcal{O}(\sigma(\delta)) \}$$

In section three, we prove the sufficient and efficient conditions for the embedding $V_{q,\alpha}^{\gamma} \subset V_{q,\alpha}$.

Preliminary Results

If 1 , then the equality

$$\lim_{\delta \to 0^+} \omega_{1-1/p}(g; \delta) = 0, \tag{2.1}$$

holds for non-constant functions g that satisfies (2.1). It is said to be p- continuous, and C_v is the family of all p- continuous functions.

In the following propositions, we introduce some basic properties of the fractional modulus of smoothness of order k-1/p.

Proposition 2.1 : Let f be a real 1- periodic function, let p' = p/(p-1). We have $\omega_{k-1/p}(f;n\delta) \le cn^{k-1/p'}\omega_{k-1/p}(f;\delta)$,

where $0 \le \delta \le \frac{1}{n}$.

Proof:

$$\omega_{k-1/p}(f;n\delta) = \sup_{0 < h \le n\delta} \omega_{1-1/p}\left(\Delta_h^{k-1}f,h\right) = \sup_{0 < h \le \delta} \omega_{1-1/p}\left(\Delta_{nh}^{k-1}f,h\right),$$

By using property (1.9), we get

$$\omega_{k-1/p}(f;n\delta) \le c \sup_{0 < h \le \delta} n^{1/p'} \omega_{1-1/p}(\Delta_{nh}^{k-1}f,h) \le c \sup_{0 < h \le \delta} n^{1+1/p'} \omega_{1-1/p}(\Delta_{h}^{k-1}f,h)$$

$$\le c \sup_{0 < h \le \delta} n^{k+1/p'} \omega_{1-1/p}(\Delta_{h}^{k-1}f,h) \le c n^{k+1/p'} \omega_{k-1/p}(f;n\delta).$$

Proposition 2.2 : Let f be a real 1- periodic function, and p' = p/(p-1), we have

$$\mu^{k-\frac{1}{p'}}\omega_{k-1/p}(f,\mu) \leq 2^{k-1/p'}\delta^{k-1/p'}\omega_{k-1/p}(f,\delta),$$

where $0 < \delta < \mu \le 1$, and p' = p/(p-1).

Proof: By using proposition 2.1 we get

$$\begin{split} \mu^{k-1/p'} \omega_{k-1/p}(f;\mu) \\ & \leq \mu^{k-1/p'} \delta^{k-1/p'} \omega_{k-1/p} \left(f; \frac{1}{\delta^{k-1/p'}} \mu \right) \\ & \leq \delta^{k-1/p'} \mu^{k-\frac{1}{p'}+1} \omega_{k-1/p} \left(f; \frac{1}{\delta^{k-1/p'}} \right) \leq 2^{k-1/p'} \delta^{k-1/p'} \omega_{k-1/p} \left(f; \frac{1}{\delta^{k-1/p'}} \right) \\ & \leq 2^{k-1/p'} \delta^{k-\frac{1}{p'}} \omega_{k-1/p}(f;\delta). \end{split}$$

Note 2.3 : For any $f \in C_v^{(k)}$, and let

$$\sigma^*(t) = t^{k - \frac{1}{p'}} \inf_{0 < u < t} \frac{\omega_{k - 1/p'}(f, u)}{u^{k - 1/p'}}$$

Clearly, $\sigma^* \in \Gamma^k_{1/p'}$. Also, by letting $\mu = t$, and $u = \delta$, in Proposition 2.2., we get

$$\sigma^*(t) \le \omega_{k-1/p}(f;t) \le 2^{k-1/p'} \delta^{k-\frac{1}{p'}} \sigma^*(t)$$

For the converse, let $\sigma \in \Gamma_{1/p'}^k$ the construction of f of Terehin [16], so by (1.10), it is clear that

$$\sigma(t) \le \omega_{k-1/p}(f;t) \le C\sigma(t)$$
.

We conclude from Note 2.3. that $\Gamma^k_{1/p'}$ is a family of majorants of moduli of p-smoothness.

Proposition 2.4: For $\sigma \in \Gamma_{1/q'}$ diverges as (1.12), then $\sum_{j=1}^{\infty} 2^{j\vartheta q/k} \sigma_j^q$, converges iff $\sum_{m=1}^{\infty} 2^{\eta_m \vartheta q/k} \sigma_{\eta_m}^q$ converges.

Proof: By means of cases of (1.16), we have

$$\sum_{j=\eta_{m}}^{\eta_{m+1}-1} 2^{j\vartheta q/k} \sigma_{j}^{q} \leq 8^{q} \sigma_{\eta_{m+1}}^{q} \sum_{j=\eta_{m}}^{\eta_{m+1}-1} 2^{j\vartheta q/k} \leq C 2^{\eta_{m+1}\vartheta q/k} \sigma_{\eta_{m+1}}^{q}$$

or

$$\begin{split} \sum_{j=\eta_{m}}^{\eta_{m+1}-1} & 2^{-j\vartheta q/k} \, \sigma_{j}^{q} = \sum_{j=\eta_{m}}^{\eta_{m+1}-1} 2^{-jq/(p'-q)k} 8^{q} \, \overline{\sigma}_{j}^{q} \leq 8^{q} \, \overline{\sigma}_{\eta_{m}}^{q} \sum_{j=\eta_{m}}^{\infty} 2^{-jq/p'k} \\ & = C 2^{-\eta_{m}q/p'k} \, \overline{\sigma}_{\eta_{k}}^{q} = C 2^{\eta_{m} \, \theta q} \, \sigma_{\eta_{m}}^{q} \end{split}$$

which ends the proof.

3. The Main Results

Theorem 3.1: Let $1 and <math>\theta = 1/p-1/q$. Let $g \in V_{q,\alpha}^{(k)}$. Assume that

$$\int_{0}^{1} (t^{-\vartheta} \omega_{k-1/q}(g,t))^{q} \frac{dt}{t} < \infty, \tag{3.1}$$

then $g \in V_{p,\alpha}^{(k)}$ and

$$\omega_{k-1/p}(g,\delta) \le 4 \left(\int_{0}^{\delta} (t^{-\vartheta} \omega_{k-1/q}(g,t))^{q} \frac{dt}{t} \right)^{\frac{1}{q}},$$
 (3.2)

for all $\delta \in [0,1]$.

Proof: Let Π be a partition of the form (1.5), then

$$\nu_{p,\alpha}^{(k)}(g;\Pi) = \left(\frac{\sum_{j=1}^{m} \left| g[t_{j,k+1}, \dots, t_{j,2k}] - g[t_{j,1}, \dots, t_{j,k}] \right|^{p}}{(t_{j,2k} - t_{j,1})^{\alpha\theta p}} \right)^{1/p},$$

$$\leq c(q) \left(\frac{\sum_{j=1}^{m} \left| g[t_{j,k+1}, \dots, t_{j,2k}] - g[t_{j,1}, \dots, t_{j,k}] \right|^{q}}{(t_{j,2k} - t_{j,1})^{\alpha\theta q}} \right)^{\frac{1}{q}}$$
(3.3)

Now, for a partition Π , define

$$T_l(\Pi) = \{j : 2^{-l-1} < t_{j,2k} - t_{j,1} \le 2^{-l}\}, \quad (l = 0, 1, \dots).$$

Set also $S_{l}^{(k)}(\Pi) = (\Sigma_{l \in T_{l}(\Pi)} | g[t_{l,k+1}, \dots, t_{l,2k}] - g[t_{l,1}, \dots, t_{l,k}]|^{q})^{\frac{1}{q}}$, if $T_{l}(\Pi) = \emptyset$ and $S_{l}^{(k)} = 0$ otherwise. By (3.3) we have that

$$\nu_{p,\alpha}^{(k)}(g;\Pi) \leq \left(\sum_{l=0}^{\infty} \sum_{j \in T_{l}(\Pi)} \frac{\left|g[t_{l,k+1}, \cdots, t_{l,2k}] - g[t_{l,1}, \cdots, t_{l,k}]\right|^{q}}{(t_{j,2k} - t_{j,1})^{\alpha\theta q}}\right)^{\frac{1}{q}} \\
\leq \left(\sum_{l=0}^{\infty} 2^{(l+1)^{\alpha\theta q}} S_{l}^{(k)}(\Pi)^{q}\right)^{\frac{1}{q}} \tag{3.4}$$

It's clear that

$$S_l^{(k)}(\Pi) \le \omega_{k-1/q}(g, 2^{-l})$$
 (3.5)

For partition Π , by using (3.4), (3.5) and proposition (2.1), we get

$$v_{p,\alpha}^{(k)}(g) \leq \left(\sum_{l=0}^{\infty} 2^{(l+1)^{\alpha\theta q}} \omega_{k-1/q}(g,2^{-l})^{q}\right)^{1/q} \leq 4 \left(\int_{0}^{1} (t^{-\theta} \omega_{k-1/q}(g,t))^{q} \frac{dt}{t}\right)^{1/q}.$$

Therefore $g \in V_{p,1/p}^{(k)}$. In addition to, let $2^{-s} \le \delta \le 2^{-s+1}$, $s \in N$, and let Π be any partition with $\|\Pi\| \le \delta$, then $T_l^{(k)}(\Pi) = \emptyset$ and $S_l^{(k)}(\Pi) = 0$ for l < s. From (3.4) and (3.5) we get

$$v_{p,\alpha}^{(k)}(g;\Pi) \leq \left(\sum_{l=v}^{\infty} 2^{(l+1)^{\alpha\theta q}} \omega_{k-1/q}(g,2^{-l})^{q}\right)^{1/q} \leq 4 \left(\int_{0}^{\delta} (t^{-\theta} \omega_{k-1/q}(g,t))^{q} \frac{dt}{t}\right)^{\frac{1}{q}}.$$

Theorem 3.2: For any $1 , <math>\theta = \frac{1}{p} - \frac{1}{q}$, and $\sigma \in \Gamma_{1/q'}^k$, then $V_q^{\sigma} \subseteq V_{p,\alpha}^{(k)}$ iff $\int_0^1 (t^{-\theta}\omega(t))^q \frac{dt}{t}$ is finite

Proof: The embedding is easily hold by Theorem 3.1. To the contrary, suppose that the necessity doesn't hold, then σ satisfies (1.13). so by (1.14), the sequence $\eta_m = \eta_m(\sigma)$ satisfies $\sum_{m=1}^{\infty} 2^{\varsigma_m \theta q/k} \sigma_j^q = \infty$,

So there exists
$$u_j$$
, $j \in \mathbb{X}$, s.t. $u_1 = 1$, and $(\sum_{m=u_j}^{u_{j+1}-1} 2^{\eta_m e_q} \sigma_{\eta_m}^q)^{1/q} > 2^j$.

Name
$$\sigma^* = \sum_{j=1}^{\infty} (\sum_{m=u_i}^{u_{j+1}-1} 2^{\eta_m \theta q} \sigma_{\eta_m}^q)^{1/q}$$

To contract the assumption, we prove that $\sigma^* \in V_{q,\alpha}^{\sigma}$, but not $V_{p,\alpha}^{(k)}$,

$$\begin{split} \omega_{k-\frac{1}{q'}}(\sigma^*,\delta) &= \sup_{\Pi} v_{p,\alpha}^{(k)}(\sigma^*,\Pi) = \sup_{\Pi} \left(\sum_{l=0}^{\infty} 2^{(l+1)\alpha\theta q} \omega_{k-\frac{1}{q'}}(\sigma^*,2^{-l})^q \right)^{1/q} \\ &= \sup_{\Pi} \left(\sum_{l=0}^{\infty} 2^{(l+1)\alpha\theta q} \sum_{j=1}^{\infty} \sum_{m=u_j}^{u_{j+1}-1} 2^{\eta_m \theta q} \omega_{k-\frac{1}{q'}}(\sigma_{\eta_m}^q,2^{-l})^q \right)^{1/q} \\ &= \sup_{\Pi} \left(\sum_{l=0}^{\infty} 2^{((l+1)\alpha+\eta_m)\theta q} \sum_{j=1}^{\infty} \sum_{m=u_j}^{u_{j+1}-1} \omega_{k-\frac{1}{q'}}(\sigma_{\eta_m}^q,2^{-l})^q \right)^{1/q} = C\sigma(2^{-l}). \end{split}$$

Conclusion

The importance of moduli of p-smoothness comes from the need to measure fractional smoothness of functions by using (p,α) kth variation. We benefit from replacing the two modulus of p-smoothness and q-smoothness , to prove some relations between the families of functions V_q^{σ} and $V_{p,\alpha}^{(k)}$.

References

[1] H. A. Almurieb and E. S. Bhaya, "SoftMax Neural Best Approximation," in *Series, I O P Conference Science, Materials Science and Engineering*, vol. 871, no. 1, 012040, 2020.

- [2] V. A. Andrienko, "Necessary conditions for imbedding the function classes H^ω_p," *Mat. Sb.* (*N.S.*), 78(120), (1969), 280–300; *English transl. Math. USSR Sb.*, vol. 7, pp. 273–292, 1969.
- [3] S. Barza and P. Silvestre, "Fnctions of bounded second?-variation," *Rev. Matem atica Complut.*, vol. 27, no. 1, pp. 69–91, 2014.
- [4] E. S. Bhaya and Z. A. Sharba, "L_p_ approximation by ReLU neural networks," *Karbala Int. J. Mod. Sci.*, vol. 6, no. 4, pp. 414–419, 2020.
- [5] C. J. de la Vall'ee Poussin, "Sur la convergence des formules d'interpolation entre ordennees equidistantes," *Bull. Acad. R. des Sci. des Lettres des Beaux Arts Belgique*, pp. 314–410, 1908.
- [6] M. Kayri, "Predictive abilities of Bayesian regularization and levenberg-marquardt algorithms in artificial neural networks: A comparative empirical study on social data," *Mathematical Computational Applications*, vol. 21, no. 2, pp. 1-11, 2016.
- [7] V. I. Kolyada and M. Lind, "On moduli of p-continuity," *Acta Math. Hungarica*, vol. 137, no. 3, pp. 191–213, 2012.
- [8] S. H. Malih and S. S. Abed, "Approximating random fixed points under a new iterative sequence," *J. Interdiscip. Math.*, vol. 22, no. 8, pp. 1407–1414, 2019.
- [9] O. Mejía and P. Silvestre, "Functions of Bounded k th p-Variation and Continuity Modulus," *J. Funct. Spaces*, vol. 2015, no. 2, pp. 1-13, 2015.
- [10] N. Merentes, "On functions of bounded (p,2)-variation," *Collect. Math.*, vol. 43, no. 2, pp. 117–123, 1992.
- [11] S. R. N. Merentes and J. L. S'anchez, "On functions of bounded (p, α)-variation," *J. Funct. Spaces Appl.*, vol. 2012, pp. 1-9, 2012.
- [12] A. J. Mohammad and A. K. Hassan, "Simultaneous approximation by a new sequence of integral type," *J. Interdiscip. Math.*, vol. 22, no. 8, pp. 1569–1576, 2019.
- [13] K. I. Oskolkov, "Approximation properties of integrable functions on sets of full measure," *Mat. Sb.*, 103 (1977), 563–589; *English transl. Math. USSR Sb*, vol. 32, pp. 489–514., 1977.

- [14] F. Riesz, "Untersuchungen "uber systeme integrierbarer funktionen," *Math. Ann.*, vol. 69, no. 4, pp. 449–497, 1910.
- [15] A. P. Terehin, "Approximation of functions of bounded p-variations," *Izv. Vyss. Uchebnykh Zaved. Matem- atika*, vol. 2, pp. 171–187, 1965.
- [16] A. P. Terehin 'Functions of bounded p-variation with given order of modulus of p- continuity', Mathematical Notes of the Academy of Sciences of the USSR, vol.12, no.5, pp. 751–755, 1972.
- [17] P. L. Ul'yanov, "Imbeddings of certain function classes H^{ω}_p ," *English transl. Math. USSR Izv*, vol. 32, no. 2, pp. 649–686, 1968.

Received February, 2021 Revised May, 2021