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Abstract

For the increasing importance of discovering new types of moduli of smoothness, more
suitable measurements are provided by the moduli of p-smoothness. Measuring fractional
smoothness of functions by p-variation is used for many purposes in approximation
theory. In this paper, we express @, ,, (f; 6) in terms of @, ,, (f; §) forany 1<p, g<eo
to get fractional modulus of smoothness of functions with bounded kth p— varation. Also,
embedding of the space V;’z is proved with necessity and sufficient conditions.

Subject Classification: 41A65 , 46560.

Keywords: Fractional smoothness, Bounded (p, o) kth — varation, Periodic functions.

1. Introduction

For several decades, function approximation is well studied by
using modulus of smoothness, moduli of p-smoothness, with different
versions and porpuses, see for examples [1], [4], [6], [8] and [12]. In
addition to the p-continuity, moduli of p-smoothness measures fractional
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smoothness of functions through p-variation. Let ¢ be a real 1- periodic
function, IM=[x,,x,...,x,] is a partition satisfying x, <x <---<x,
where x =x,+1l,and p>1, p'==p/(p-1), and O0<a<1/p’ Set
[| TT| =max(xl,+l —x].). For any II, in [9] the authours defined the Ve
-variation of a function f :[a,b] > R, as follow
S
e ) - 80|
v, (g )= ZQ (1.1)

k=0 (xk+1 — X )ap

The function gis said to be bounded p—varation iff

V,.(8)=supv, (1)< e, (1.2)
1

Define V, , to be the set of functions of type g in (1.2). When & =0,
then Vr,O =V . In order to define the bounded second variation, Poussin
modified the partition II, in [5], to be as follow

X<y, <z <x,<y,<z,<x, <<y <z <x =x,+1 (1.3)

With extra modifications by the Riesz in [14], Merentes in [10], the
second variation functions f that satisfies the finiteness of the following

1+1) g(z,+1) g(y,+1) g(x)| 1 (1.4)

p/p
xi+1 Zi+1 yi+1 i | (x1+1 —Xi)

(2)
VP 1/p

More extensions are made by [9]. Fist, they used the following
partition from [3] and [11] for k € N.

x0=t1/1<t1,2<---<t ) t11+1 ~<151,21,SmSi‘ZM<---S---<153,1<~~<tL],/1
<"'<tj,i Stj,Hl <"'<tj,21‘ —"'Stm,l <"'<tm,i Stm,Hl <“'<tm,2i
:x0+1, (1.6)

The number V ) (g) is the (p,@)kth p—variation of g, and is given by

1

m P ;
200 = Sttt | A
=1 (tj,Zk _t/rl)

where

- ()
[t /t /...It ]:: - 7
8k g 2(t].—to)---(t]_—tj_l)(tj—t]_ﬂ)-.-(tj—tk)

j=0

1.7)
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is the kth divided difference. Set the space Vp(k; (K eN) to be the space of
1- periodic functions g s.t.
k)

V(@) =supy (g 1) <o, (1.8)

Note that Vp(k)( g) is mentioned to the family of kth p—variation of
g where a =0. Later, Terehin studied the properties of the modulus of
continuity of fractional order 1-1/p [15]. With an important property

wl—l/p (g’ nh) < nl/p,wl,l/p(g; h) (19)

A generalization of Terehin definition is essential, to get what is called
modulus of fractional p-smoothness of order k—1/p.

;17 (8; 0) = sup o, (A7'gh) (1.10)

where
Ag(x)=glx+h)-g(x). Alg(x)=A,A " g(x).

In [7], Kolyada defined the family of continuous functions Q_ so to
prove that Q, . is the family of majorants of moduli of p-continuity.

Here, we define the family of k-smooth functions T'* by requiring the
following conditions for every o e 'Y, we have

i o(0)=0,
iil. o(t)is nondecreasing, and

iii. o(t)}t"**is nonincreasing

Unlike Kolyada, condition iii, comes to fit the case of study, (p, )
kth p-variation. It is clear that I'; =, is almost like the family of moduli
of continuity. T, =Q_ is the family of Kolyada, whose family is simply
Q, . For 1<g<eo, and forany o €T, , construct the sequence similar
to [7]

o, =0'(2'"), En :271/1«1,0'”, (111)
By conditions (ii and iii) above, we get that

n

. <o <2Vg and
{ n+l n +1 (112)

= S ~1/kq' =
O-n+1 < O-n < 2 O-n+1

But if
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LHm 27" o (t) = oo, (1.13)

t—0+

then by the constructed sequence of integers 7, =7, (o) from [17], [2] and
[13] we assume 77, =0, and

. o, 0,|_1
Me.s :mm{ne&:max[ ,— ]S—}, (1.14)
o, O, 4
so that
40‘nk1 < o, 45"“ < Enk, (1.15)
Then

40 -1>0 ,or 40 >0 -1
My % e

1 e

By (1.11), we get one of the inequalities

o, <80, ,oro, <80, , (1.16)
k k+1 k+1 k

Now, for any o €T’} ,» define the set
Vie =18 €Vyo @,y (8; 8) = O(0(O))}

In section three, we prove the sufficient and efficient conditions for
the embedding V' 'V, .

Preliminary Results

If 1< p<eo, then the equality
lim @ ;0)=0, 2.1
sm 1y, (85 6) 2.1)

holds for non-constant functions g that satisfies (2.1). It is said to be
p- continuous, and C, is the family of all p- continuous functions.

In the following propositions, we introduce some basic properties of
the fractional modulus of smoothness of order k-1/p.

Proposition 2.1 : Let fbe a real 1- periodic function, let p’=p/(p—1). We
have w_,, (f;n0)<cn ™o, (f;0),

k-1/p k-1/p

where 0363%.
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Proof :
Oy (fin8) = sup o, (A7 f.1)= sup @y, (AL, h),

0<hs<né
By using property (1.9), we get
(find)<csupn'o_, (AL f,h)<csupn'™w_ (A f,B)

1- l/p
0<h<d 0<h<d

<csupn e, (B ) <" 1, (find).
0<h<é

k 1/p

O

Proposition 2.2 : Let f be a real 1- periodic function, and p’=p/(p-1),
we have

L

1o, (fu<27 8 e, (f,0),
where 0<d<u<1, and p'=p/(p-1).
Proof : By using proposition 2.1 we get
o, (f0)

1
< g s Oy, (f;—é,k_l/p, ,u]

k=L 1 1
k-1/p" z . k-1/p" ok-1/p’ .
<6 u b a)k_l/p(f,b‘kl/p,JSZ P a)k—l/p(f’WJ

1

< TV w  (£:6).

k-1/p

Note 2.3:Forany f e C®  and let
P

1
o' ()=t 7 ing L)

O<u<t ukfl/P'

Clearly, o € F’l‘ e Also, by letting u=t,andu=06, in Proposition
2.2., we get

oL

o'(Hh< (<278 Vo't

k 1/p
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For the converse, let o € F’l‘ I the construction of f of Terehin [16], so
by (1.10), it is clear that

o)< a)kfl/p(f; f)<Co(t).

We conclude from Note 2.3. that T} ,y is a family of majorants of

moduli of p-smoothness.

Proposition 2.4 : For o€l e diverges as (1.12), then Zf:12f””/ko',7/

. 9q/k
converges iff ¥,_ 2" o, converges.

Proof : By means of cases of (1.16), we have

Mg =1 Mg ~1
j j 9q/k
z 2/0a/k 51 < 81 5 z ik < CDMinP1/k 50
J s s
=M, =M,
or
Tya —1 Ty =1 oo
i —ia/(p =)k o g —, _ _ia/p'k
> 2ol = 3 2 G <815) Y
=1, J=My, =1y,
= C2 WPk F1T = M 51
Tk T
which ends the proof. O

3. The Main Results

Theorem 3.1: Let 1<p<q<eoand @ =1/p-1/q. Let g€ V). Assume that
[ dt
_[(t lywk—l/q (8 1))’ T < oo, (3.1)
0
then g e V) and
t dt
@,,,,(80)< 4[j(f”wk_l/q(g,t))‘7 TJ , (3.2)
0

forall 6 €[0,1].

Proof : Let I1 be a partition of the form (1.5), then
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m 14 1/P
® 2].21 g[t;,k+1/'"'tj,zk]_g[tj,l""/tj,k]‘
Vo (g,'H) = adp ’
(tj,Zk _tj/l)
1
m 9 \a
j=1 g[tj,k-v-l’”"tf,Zk]_g[t]’,l’”"tj,k]‘
< c(g) (33)

o6
(tj,zk _tj,l) !

Now, for a partition II, define

T (M) ={j:277" <t , ~t

2k YA

<2, (1=0,1,--).

Set also  S(IN)= (ZleT,(n) | &Lt oot =8l oot T )y, if
T,(I1)=Q and S;k) =0 otherwise. By (3.3) we have that

1
- £ et 1=t et ]|q 1
) /. |g[ 1k+1 Y3 e U Lk
VP,II(g’H)S z 2 0q
=0 jeT,(IT) (tj,zk _tj,])
1
” ot q
s(Zz“*” s;“(n)ﬂ] (3.4)
1=0
It’s clear that
Sl(k)(l"[) < @y, (g, 27" (3.5)

For partition II, by using (3.4), (3.5) and proposition (2.1), we get

1

1/q 1/q
= +1)%01 _ _ dt
v;f;(g)s(zzﬂ "0, 08,2 l)qj 54[ [0, (s.t) TJ .
1=0

0

Therefore g € V;ﬁ)/p. Inadditionto,let 2° <8 <2, se N, and let IT
be any partition with || I1]| <, then Tfk)(l'l) = and S,(k) (IT)=0forl<s.
From (3.4) and (3.5) we get

1

- 179 5
1) _ _ dt |7
v (g; H>s[zz(’ Y wk_l/q<g,2’>q] s4[f<t ”wk_l/q<g,t>>q7)
0

I=v
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TheoremS.Z:Forany 1<p<q<oo,0—%—%, and o T}

1 then V2 y®
q p.x
iff [, (t @ (t))" = is finite

Proof : The embedding is easily hold by Theorem 3.1. To the contrary,
suppose that the necessity doesn’t hold, then o satisfies (1.13). so by
(1.14), the sequence 7, =7, (o) satisfies X, _, 2° nd1/k o/ =

7

So there exists u,jer, st u, = =1, and (szﬂu o 9qo.q )w > 0/

Name ¢" =37, (S}, 2707 )"

To contract the assumption, we prove that o € V., butnot Vp(kfz ,

1/q
(0,8)= supv;kl (o7, T) =sup 22(1”)0’9”’(0 (o, 27y
-— n ! n | k-—
q q
17 a
oo /+
— sup 22(l+1)m9112 2 21] 91/] ’2—1 )q
j=1 m= u; q o
17 Va
oo U
= sup 22“’*”“*" Yy Z o (o} ,2")| =Co@").
j=1m= u; q
O
Conclusion

The importance of moduli of p-smoothness comes from the need to
measure fractional smoothness of functions by using (p, ) kth variation.
We benefit from replacing the two modulus of p-smoothness and

g-smoothness , to prove some relations between the families of functions
Ve and V.
q p.x
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