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Abstract

The essence of asymptotic methods is approximation. The main object of this
thesis is to give a unified derivation of some results and theorems.

Also, this research deals with asymptotic distributions that is the distributions we
obtained by letting the time horizon (sample size) tends to infinity. The research
methodology is theoretical. We obtain some results for the univariate case (for
example about sequence of random variables ) and the multivariate case (for example
about sequence of random vectors) about the asymptotic theory.
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Introduction

Exact distribution theory is limited to very special cases (normal independent
identically distributed (i.i.d.) errors linear estimators), or involves very difficult
calculations. This is too restrictive for applications. By making approximations based
on large sample sizes, we can obtain distribution theory that is applicable in a much
wider range of circumstances. These approximations are sometimes quite accurate

and can often be constructed without a complete specification of the population
distribution for the data. Suppose F,(x)is the (unknown) cumulative distribution
function for some statistic based on a sample of size n. If it can be shown that the

sequence of functions F(x),F>(x), ... converges rapidly to a known limit F(x)as n
tends to infinity, then we might use F(x)as an approximation to F,(x)even for

moderate values of n. The quality of the approximation depends on the speed of
convergence, but can be checked by computer simulation.

The simplest example of this approach “is the average of independent draws
from a distribution possessing a finite variance. Let in = n_IZ?ZIXI. , where the
X’s are iid. with population mean =FE(X;)=and population variance
=Var(X;)=0?. By an ecasy calculation, we find that X, has mean x and

variance 02 /1. Although the exact distribution of X n depends on the distribution of

X’s, a simple asymptotic approximation is always available. The cumulative
distribution function F, for X, is quite sensitive to the value of n so we would not
expect the limit of the sequence F, F,,... to yield a good approximation to F,
unless 7 is very large. But the standardized random variable S, = Jn ()_(n - o
has mean zero and variance one for every r; its cumulative distribution function, say

F: , 1s much less sensitive to the value of n. Thus, if we could find the limit F* of the
sequence Fl*, F; , ..., we might be willing to use it as an approximation to the
distribution of S,,. The sequence F|', F5, ... necessarily converges to the standard

normal cumulative distribution function. This leads us to approximate F,, by the

cumulative distribution function ofa N (4,02 /n) distribution.



People may ask; since asymptotic distribution is only an approximation, why
we are not using the exact distribution instead? Unfortunately, the exact finite sample
distribution in many cases are too complicated to derive, even for Gaussian processes.
Therefore, we use asymptotic distribution as alternatives.

Most econometric methods used in applied economics are asymptotic in the
sense that they are likely to hold only when the sample size is “large enough”.

Asymptotic theory involves generalizing the usual notions of convergence for
real sequences to allow for random variables. It is important to emphasis that limiting
distributions obtained by central limit theorem (CLT) all involve unknown parameters
which we seek to estimate.

The asymptotic distribution was studied by other researchers who worked in
our field which as the following :

The asymptotic distribution of the likelihood ratio test that is one technique for
detecting a shift in the mean of a sequence of independent normal random variables
derived by (Irvine,1986). The empirical process proof of the asymptotic distribution
of sample quantiles studied by (Rust,1998).

The asymptotic distribution of gumbel statistic in a semi-parametric approach
(*) derived by (Alves,1999) where this note is an answer to some open problems
connected with recent developments for appropriate methodologies for making
inferences on the tail of a distribution function (d.f.).The asymptotic results for the
linear regression model studied by (Flinn,1999). A general result concerning the large
sample distribution of Moran I type test statistic given by (Kelejian & prucha,1999)
and applied this result to derive the large sample distribution of the Moran I test
statistic for a variety of important models for which general spatial correlation testing
procedures are not available.

A review of basic elements of asymptotic theory provided by (potscher &
prucha, 1999) . Topics included modes of convergence, laws of large numbers and
central limit theorems.

The asymptotic distribution of the Euclidean distance between MA models
studied by(Sarno, 2001). An introduction to asymptotic oncepts in statistics studied by
(weeks,2003).An introduction to asymptotic concepts in statistics studied by
(Weeks,2003) .

The asymptotic distribution of a simple two-stage (Hannan-Rissanen-type)

linear estimator for stationary invertible vector autoregressive moving average



(VARMA) models in the echelon form representation studied by(Dufour &
Jouini,2004) . General conditions for consistency and asymptotic normality are given.
A consistent estimator of the asymptotic covariance matrix of the estimator is also
provided, so that tests and confidence-intervals can easily be constructed.

The formal properties of corrrelators of eigenvalues in the so-called planar
limit (semiclassical) of various matrix models in terms of certain algebra-geometric
data presented by (Bertola,2004). The asymptotic distribution of a set of linear
restrictions on regression coefficients studied by (Anderson,2004) where reduced rank
regression analysis provided maximum likelihood estimators of a matrix of regression
coefficients of a specified rank and of corresponding linear restrictions on such a
matrix. These estimators depended on the eigenvectors of an “effect” matrix in the
metric of an error covariance matrix and shown that the maximum likelihood
estimator of the restrictions can be approximated by a function of the effect matrix
alone. The procedures are applied to a block of simultaneous equations. The block
may be over-identified in the entire model and the individual equations just-identified

within the block.



Definition (1) (Fahady &Shamoon,1990)
Consider distribution functions Fi(.), F2(.), ... and F(.). Let X;, X, ... and X
denote random variables (not necessarily on a common probability space) having

these distributions, respectively. We say that X,, converges in distribution (or in law)
to X if

lim E,(v)=F(v), for all v which are continuity points of F.

n—» 0

d L w
This is written X,, > X or X, > X or F, >F.

The limiting distribution function, F, is referred to as the asymptotic
distribution of X,,, and provides the basis for approximating the distribution of X, ,
as n increases without bounds.

In practice when the mean or variance of X,, increase with 7, in deriving the

asymptotic distribution of X, it is necessary to consider the limiting distribution of

. : X —
normalized or rescaled random variable, Z, :n—'un, where u, and o, are
Gn
appropriate constants.
In general, we would like to say that the distribution of the random variables

X, converges to the distribution of X if
F,(x)=P(X, <x)—>F(x)=FX<x) foreveryxeR.

Theorem (2) (Serfling,1980)
Let the distribution functions F, Fy, F,, ... possess respective characteristic
functions @, ¢, ¢,. ... . The following statements are equivalent:

w d
(i) F,—>F (or X,, >X);
(i) im ¢, (0 )= (), for each real 0 ;

(iii) im ., _[ gdF = _[ g dF, for each bounded continuous function g.

Proposition (3) (Dufour,2003)
Let {X,} and {Y,} be two sequences of random variables such that

p d
X,—-Y,—>0and Y,—>Y,andlet g: R — R be a continuous function. Then
d
(@) Xy —>Y;

®) 9(Xa) — 9(Ya)0:
d
(c) g(Xn)_)g(Y)

Definition (4) (Boik,2004)

p
Let { X, } be a sequence of random variables. X, =0, (1) if X, —0. That

is,



forevery ¢ >0, lim P(| X, |<¢)=1
n—»0

or, equivalently, for every &€ > 0 and for every 17 > 0,3 an integer n(e,n)
Such that if n > n(e,n) then
P(X,|<e)=1-n.

One can say, informally, that X, =0,(1) if X,= o(1) with arbitrarily high
probability.
1. Some results for a univariate case about the asymptotic theory
Lemma (5)

Let {X,,} be a sequence of independent random variables such that

d m d
Xni—X,i=1, ..., m, where X is a random variable. Then > X,; >mX.
i=1

Proof:

m
Let ¢, (0) be the characteristic function of )X, , for any real 6. Then
i=1
03X,
0,(O)=E e

and
lim ¢, (6) = E(e®™ )
n—o

which is the characteristic function of mX and this is implies that
m d
> X &> mX. (by Theorem 2(i),(ii)).
i=1

Theorem (6)
Let { X, } be a sequence of independent random variables and {Y,} be a
d p
sequences of random variables such that X,; >X,i=1, ..., mand Y, —>cC, where

X is a random variable and c is a constant not infinity. Then

m d
(@ Y. X, tY,o>mX=*c;
i=1
m d
) > X,; Y, >meX;
i=1

ZXm' d

© = MR ipcx0.
" c



Proof
(a) Choose and fix v such that v—c is a continuity point of F, (V). Let

& >0be such that v—c+¢& and v—c—¢ are also continuity points of F, (V).
Then

F (V):P(me +Y, Svj
ZX;1z'+Y11 i=1
i=1

SP[ZXni+Yn <Y, —c|<8j+P(|Yn —c|>¢)
i=1

m

SP[ZXW Sv—c+sj+P(|Yn —c|>¢).
i=1

Hence by the hypotheses of the theorem, and by the choice of v —c + ¢,

limsup F, (v) < lim supP(%Xm- <v—c+ gj +limsup P(|Y, —c|>¢)

n—>o ni T Xn n—>ow i=1 n—>w
i=l1

=F,x (v—c+e¢).

p

Since Y,, ¢, we have limsup P(| Y, —c|>¢)=0.
n—0

Similarly,

m m
P(ZX,”- < v—c—gj < P(ZXM +Y, < v)+P(| Y,—cl|>¢)
i=1 i=1
and thus
F,x(v—c—¢)<liminfF, v).
n—>o0 > X,itY,
-1

Since v — ¢ is a continuity point of F,x(v), and since & may be taken arbitrarily small,
we have

limF,, (M =Fux (v=0) = Exic (v).

n>w 3 X, +Y,
This is follows i[;1121‘[

%Xm- +Y, j)mX + ¢ (by Definition (1)).
And to proof thé:(l)ther direction, we have

m
Let @,(6) be the characteristic function of Y X,;, — Y, , for any real 6.

i=1
Then

and



lim ¢, (0) = e * E(e" ™)
n—oo
which is the characteristic function of mX—c and this is implies that

m d
> X, — Y, >mX -c (by theorem (2)(i),(ii)).
i=1

m
(b) Let Z, = > X,; (Y, —¢), and for arbitrary positive constants ¢ and &,
i=1

consider
P<| Z, > 8): P( iXm.hYn — c| >e,Y, — c| < gj +
i=1
P[ixm |Yn —C|>8,Yn —c|2£j
i=1 5

ixni

SP[ 28]+P(|Yn—c|2£j.
i=1 d

For any fixed O, taking limits of both sides of the above inequality, and noting that

m d
>5J.

p
by assumption Y, —¢ and Y X,; > mX, we have
> 5) can be made as small as desired by

ZXni

i=1

ZXm'

i=1

o)

lim P(|Z, > ¢) < lim P[
n—» 00 n—»00

m
Z Xni
i=1
choosing a large enough value for d. Therefore

But ¢ is arbitrary and hence P(

P
lim,_s» P(|Z, [>¢)=0and Z,, - 0. Hence by proposition (3)(a),
m m
> XYy and cd X,; will have the same asymptotic distribution given by the

i=1 i=1
distribution of mcX.

(c) Let anzxm[
i=1

gand O, consider

1 1
Y_ ——|, and for arbitrary positive constants
C

n

n 1 1 €
P\Z |>¢)=P X |———>¢e,Y —cl<—|+
(2,-¢) (21 ", Y, SJ
m 1 1 €
P DY X,ill———>¢6,Y, —c|=2—
(Zl v, oo 5)




X

ni

M=

i=1
|cY

n

<P

>8 +P(|Y —c|zfj.
n 8

For any fixed o, taking limits of both sides of the above inequality, and noting that by
)4 m d
assumption Y, —c and ZX ai —>MX, we have
i=1
m
ani ZXni
L Iss|=p =155
|cYn| |cYn|

m

lim P(|Z,|>¢)< lim P
n—>oo n—>0

m
ani
i=1

|cYn|

But ¢ is arbitrary and hence P, >0 |can be made as small as desired by

P

choosing a large enough value for J. Therefore lim P(|Z, |>¢)=0 and Z,—0.
n—»c

ZXni ZXm'

Hence by proposition (3)(a), :=—— and =1
Y, C

will have the same asymptotic

mX
distribution given by the distribution of ——. m

C
Example (7)
Suppose that { X, } be a sequence of independent random variables and
d
{Y,} be a sequences of random variables such that X, —>X,i=1, ..., m and
p

Y, —>c, where X~ N (u,6°) and ¢ is a constant not infinity and suppose that there are
two constants such as a and . Then

m d
(1) a[Zij +bY, > N(mau £ bc,mazaz).
i=1

m d 2,22 2
) ab(ZXm.Ynj%N(mabC,u,ma b'c o).
i=1

a(ZXm.j 4 may ma’ o’
i=1 _)N( /Ll

bY be ~ p22 )

n

()



Theorem (8)
Let { X, } and {Y, } be two sequences of independent random variables such

d d
that X,;,—>X,i=1,...,mand Y, =Y, where X and Y are two random variables.

Suppose X, and Y, are independent for # >1. Then X and Y are independent, and

m d
(@YX, tY, omXztY;
i=1
m d
) D XY, >mXY;
i=1

ani d

- X
() = M2
Y, Y

Proof:

m
(a) Let ¢,(6) be the characteristic function of ) X,; + Y, for every real 6.
i=1
Then

N m
ze(zxmwnJ 0y X,,
i=1

4 (O)=E| e - —Ele = "

and taking limits we have:
. iOmX Y
lim¢ ()=E (el e )
lim ¢,0)
which is the characteristic function of mX+Y, and consequently

m d
> Xpi + Y, —>mX +Y (by Theorem (2)(i),(ii)).
i=1

And to proof the other direction, we have

m
Let ¢,(0) be the characteristic function of Y X,; — Y, , for every real 6.
i=1
Then

m m
12X, =Y, 02X,

grn)|f ot
4 (O)=E ¢ —Ele 7 e

and
. iOmX —ifY
lim¢ (0)=E (el e )
lim ¢,(0)
which is the characteristic function of mX-Y, and this is implies that

m d
> Xpi =Y, —>mX =Y (by Theorem (2)(i),(ii)).
i=1

10



m
(b) Let @,(6) be denote the characteristic function of ZXW-Yn , for every
i=1
real 6. Then

iﬁ(ngY"J
hO)=E e 7

Taking limits we have:
. i0(mXY)

lim¢ (0)=F (el )

lim ¢, (0)

which is the characteristic function of mXY, and consequently
m d
D> Xni Yy > mXY (by Theorem (2)(i),(ii)).
i=1

(c) The proof is similar to that given above for (a), (b). m

Example (9)
Suppose that {X,} and {Y,} two sequences of independent random
d d
variables such that X,,—X,i=1, .., mand Y,—Y, where X and Y are

independent such that X~N(u;, 012 ) and Y~N (u2, G%) and suppose that there are two
constants such as a and b. Then

m d
(1) a[ZXm.j +bY, - N(mau, = b,uz,maZO'l2 + b20'22).
i=1

ul d 2,2 2 2
) ab| Y. XY, | > N(mabuu,,ma"b" o, 0;).
i=1

Theorem (10) ( Velasco , 2001)
d d
X, > X AMNX, >A'X WV vector ).

Theorem (11) (Johnson & Wichern , 1998)
X~N(uwV) < MX~ N} w,\AV1),V vector .

Lemma (12) ( Velasco , 2001)
Let {X,}and {Y,} be sequences of random (k x 1) vectors. Then:

p d d
@If (X,-Y,)>0and X, >X=>Y, —>X.

d p p
MIfX,>XadY,>0=>Y' X, —0.

11



2. Some results for a multivariate case about the asymptotic theory .

Lemma (13)
Let {X,} and {Z,} be two sequences of (k x 1) independent random vectors

suchthatZ, =X,  +X -~ +..+X .72, =X, +X, +..+X,  and

m
z, =X, +X, ,+..+X,_  Then Z‘i)_(m =Z,
t=

Proof

m
Z>—(nt :)—(nl + )—(n2 tot Xnm
t=1

Xlnl X1n2 Xlnm
X2nl X2n2 X2nm
= + +...+
anl an2 anm
Xlnl +Xln2 + . .ot Xlnm Zln
Xan +X2n2 + . .ot Xan ZZn
= = = Zl’l .
anl +an2 + . .ot anm an

Lemma (14)
d
Let {X,, } be a sequence of (k x 1) independent random vectors. If X, =X ;

m d
t=1,..., m, then Z)—(m —>mX.
=1
Proof

(@)

>

m
Denote the characteristic functions of A’ »_ X, and mA'’X by ¢ By
t=1 ot
t=1

and ¢m7uX (@), respectively,

when A =(Aq,...,A; )" is an arbitrary vector of fixed constants and 6 is any real.
By using Theorem (2)(i),(ii) and Theorem (10), we have

12



¢,

O)=4,, ) (byLenma(13)

k
/ 0y \.Z.
iOA Z R
= & "j:Ee’—1 ,

m
Z Xnt
t=1

and
k k
192 7\.[2[ l@mz 7\.[X[
lim¢g , (O)=Ele ™ =Ele *
n—© }LIZXM
t=1
im\'X
= B )=, 0)
limg ~— (0)=¢ k,X(Q),V&eRk,&;t(_),VQER
noO Y X, s
t=1
m d
=LY X, >mMX,VAe R, L# 0 (by Theorem (2)(i).(ii))
t=1
m d
= ZXM —>mX (by Theorem (10)).
=1
Theorem (15)

Let {X,}be a sequence of (k x 1) independent random vectors with

d
X, —>X,t=1,..,m,and let {Y,}be a sequence of (k x 1) random vectors with
Y, —c¢, where ¢ be a vector of constants not infinity. Then

d

M ds

(a)

1

~
Il

m d
® Y, > X, >mc'X.
t=1

Proof
k
(a) Choose and fix v such that v — Zkici is a continuity point of
i=1
k k
k2%, (v). Let € >0 be such that v — tZ‘ikiCi +¢& and v —Z}kici —¢& are also
i=1 = =
continuity points of F v).

my AiX;
i=1

13



m
Denote the distribution functions of A’ [ZXW +Y nj and A'(mX+c)by
t=1

F /. (v) and Fx'(mX o) (v), respectively,
W(ZX,”JFY,J T

P
when A =(A,,...,A, ) is an arbitrary vector of fixed constants. By using Definition
(1) and Theorem (10), we have
F (v)= F)g(zn +Y, )(V)

(1o, B

t=1

=F,
SAZ

i“in
i=l1

)

k
+2 0 Y,
i=1

k k
= P(INZ,, + I, <v)
i=1 i=1

k k
20 Y, — Xk,

k k
< P[inzm +YAY, <v,
i=1 i=1

i=1 i=1
+P(

k k k k
SP(ZXI.ZM <v— YA +8j+P( 2NY, = YA

i=1 i=1 i=1 i=1

2)

k
Hence, by the hypotheses of the theorem, and by the choice of v — Z?uic i+ &,
i=1

k k
2NY, = Yk Zsj
i=1

i=1

limsup F, k (v)
noow  2MZin+ 2 hiYin

i=1 i=1

2]

k k
SlimsupP(ZkiZm <v— YA +sj+1im supP(

n—>0 i=1 i=l1 n—>oo

k k
20 Y, — 2 A
i=1 i=1

k k
=F (V—Zkici+sj:F ‘ (V—Zkici+sj.
MiZ; i=1 i=1

1 i=1

M

1

Similarly,

14



k k
2N Y, = YA
i=1

i=1

i=1 i=1 i=1
and thus

(ZXZM_ —fx,.c,.—j (ZXZM+ZXYMS\»j+P[
i=1

2AZ; m YA X; i=1 n—>0 YN Zipy+ YA
i-l i-1 i-l i-l

k
Since v— Y A;C
i=1

; is a continuity point of F & (v), and since & may be taken
mY . AiXi
i=1

arbitrarily small, we have
k
llka k (V)ZFk ( ZQLC ) k (V—incij
i=l

n—0 Y AiZpn+YAiYip 2NZ; m Zk X;
i=l i=l i=1

=F (v)
mZ?»X +Z7\. c;
i=1

ie., lim F ,( m J (V) =Fr(mx+e)(v)
n—o M X>X,, +Y,
=
:y(fzm LY j—>x'(mx+c) Yie R\, A£0
t=1
(by Definition (1))
m d
= > X,; +Y, >mX + ¢ (by Theorem (10)).
t=1

The proof of the other direction is similar to that given above.

m
(b) Denote the characteristic functions of Y', > X . and mc'X by
t=1
P, w_ (0)and @, x(0), respectively, when 6 is any real.

Y, XX,
t=1

By using Theorem (2)(i),(ii), we have

.

ay (@)=¢y', z, (0) (by Lemma (13))
l=lint
16’2
eYl Z in m
:E(el e ):E e ,
and hence
i9§cizi i@m%cixi
lim 0)=Ele ™ =Ele ™
I’l—)00¢fn lent ( )
=

= Bl )= g,ex (0)

15
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k
Fy ( ch —8)=F K (V—Zkici—sjﬁliminfﬂ k v).



lim¢g , (0)=¢,.x(0),V0 e R, it then follows that
n— Y7,n ZX 1 -
=1

n

3

d
Y', 3X,, —mc’X (by Theorem (2)(i)(ii). m
t=1

Example (16)
Let {X,}be a sequence of (k x 1) independent random vectors with
d
X, =X, t=1,..,m, where X~ N(u,V) and let {Y,}be a sequence of (kx1)

P
random vectors with Y , — ¢, where ¢ be a vector of constants not infinity. Then

, is the same as that of mX = ¢ ; that is,

m
(1) The limiting distribution of » X, +Y
t=1

using Theorem (11), we obtain that
Va=(hohy) €RE %0
L’(mX) ~ N(mﬂﬁ,mL'VL).

Using the other direction of the Theorem (11), we now find
mX ~ N(mﬁ, m V)

where mV is positive definite because 0 <mA VA <ocoforallA#0. Finally, it
follows that

3
[
|+
(e}

l
=
3

=
|+
o
3

S
<
@]
=
=
2

~
I
—_

m
(2) The limiting distribution of Y', > X . is the same as that of mc'X. Note that
t=1

mc'X ~ N(mc_'ﬁ,mC_'Vg), and this is follows that

3

d
Y, 2 X, = N(mc u,meVe).
1 H

t

16



Theorem (17)
Let {X,}be a sequence of (k x 1) independent random vectors with
d
X=X, t=1,.,m, and let {Y,}be a sequence of (k x 1) independent random
d
vectors with Y, =Y , where X and Y are two random vectors. Suppose X, and Y,
are independent for 7 >1. Then X and Y are independent, and
m d
(a) Zl(n[ i Xn _)m>_( i X:

t=1

m d
® Y, )X, »>mY'X
t=1
Proof:
(@) Let ¢ (, (f)be  the characteristic  function  of
7\"( Z Xnt +Xn J
P

m
A [ZXW +an and let @p(ux+y)(B)be the characteristic function of
t=1

M (mX +Y), for any vector A =(A,,...,A, )" € R¥and any real 6.
Using for proof Theorem (2)(i),(ii) and Theorem (10), we have

b £y, | OO0 @) rLonme 13)

E

B E(eiex;(zn +Xn))

k k
iﬁ(z kl.Zl.n+z kl.YinJ
_Ele i=1

k k
0y %z, 63 LY,
:E e i=1 e i=1

Now taking limits of the above, we have

k k k k
0y N2, 0 .Y, iomy LX, i0Y LY,
limg , O=Ele ™ "™ =Ele & e ™
=0 w(zxm‘-i_YnJ
t=1

k k
i@(mz LX Y x[Yl.J
e i=1 i=1

=FE

= B[ XD ) g (O,

17



Therefore, we have
m d
L’(ZXW + an—)ﬂ(m)_( +Y),Vie Rk,L #0 (by Theorem
t=1

(2)(1),(i1)). It then follows that
m d
> Xy +Y,>mX+Y (by Theorem (10)).
t=1
The proof of the other direction is similar to that given above. m
(b) the proof is similar to that given above for (a).

Example (18)
Let {X,, } be denote a sequence of (k x 1) independent random vectors with
d
X, —>X,t=1,.,m,and let {Y,}be denote a sequence of (k x 1) independent

d
random vectors with Y, — Y . Suppose that X, and Y , are independent for n >1.

Then X and Y are independent such that X ~ NQI,VI) and Y ~ N@z,Vz ), and

m

the limiting distribution of Z)_( a T Y, is the same as that of mX £ Y ; that is,
t=1

note that by taking Theorem (11), we obtain that

Yh=(ph,) € RS A20
W(mX £ Y) ~ Nonk'g, + 1 mdV,h+ KV, ).
Using the other direction of the Theorem (11), we now find
mX+tY~ N(mﬁ1 iﬁz,mV1 +V,)
where mV| +V,is positive definite since VA € R¥ AZQ:
mL’VlL + L’VzL > 0, it then follows that

m d
EX’” an%N(mﬁl tu,,mv; +V,).

Theorem (19)
Let {X,}be a sequence of (k x 1) independent random vectors with
d
X, —X,t=1,..,m,and let {Y,}be asequence of (» x k) random matrices with

P m d
Y, —>C.Then Y, Y X,, »>mCX.

t=1

18



Proof:
Let ¢x( u mJ(H)and ¢Mmcg)((9)be the characteristic functions of
=1

m

A [Yn szj and A'(mCX)), respectively, when A = (A1,...,Aq )" is an arbitrary
t=1

vector of fixed constants and € is any real.

¢x,(Yn 2 XmJ(@) =$u(v,2,)(0)  (byLemma(13))

t=1

o k
[P Z Z jyjinzin
:E(e’WY”Z")):E e ,
and hence
o k
zz jﬂ, l@mZZXJﬂ
limg . (9):Ee’:“: —Ele 7
o w( §x, j
t=1
_ zm;(mcz))_
~ £le =B, ©).

m d
( 2X, j—w(mC)_(),VL € R? A # 0 (by Theorem(2)(i)ii)).

d
=Y, ant —>mCX (by Theorem (10)). m
t=1
Example (20)
Let {X, } be denote a sequence of (k x 1) independent random vectors with

d
X, =X, t=1,.,m,where X ~ N ,u,V) and let {Y, } be denote a sequence of (®

p m
x k) random matrices with Y,, = C. Then the limiting distribution of Y, ZX 18
t=1
the same as that of mCX, in other words,

m d
Y > X, > NmCu,mCVC’).
=1

Theorem (21)
Let {X,}be a sequence of (k x 1) independent random vectors with
d
X, =X, t=1,.,mand let {Y,}be a sequence of (k x k) random matrices with

P m d
. . -1 -1
Y,, — C, a nonsingular matrix. Then Y, ant —->mC X.
t=1

19



Proof

Suppose that
Ay - - - Gy dy . . . dy,
-1 -1 _
Yn =| . and C =
Qe 0 Qg dy - - . dkk_

Now using for proof Theorem (2)(i),(ii) anc_i Theorem (10) by denoting the

m
characteristic functions of A’ (Y};l > X, j and A/ (mC'l)_() by
t=1

7\‘1

) ’ k

@ (Y,;l anlmJ(e) and ¢7J(mC‘1 %) (@), respectively, VA = (A,...,A ) €R ",
t=1

A=0,VOeR:

¢w(Y_1m tJ(H):qﬁx,(Y’;lZn)(e) (by Lemma (13))

n 2n
t=1

k
10 A.a. Z.

—_

by taking limits, we obtain that
k ok

limg ., ~@O)=Ee ™" =Ee 7
n— W(Y; ZXmJ

_ E(eiex'(mclm) —¢ ©).

A (mC™X)

Hence, by above, we have
m d
L’(Y};l mej—)ﬂ(mc'IX),V?_u € Rk,L #0 (by Theorem
t=1
(2)(1),(i1)), and this is follows that

m d
Y, > X —SmC” X (by Theorem (10)). m
t=1

Example (22)
Let {X, } be denote a sequence of (k x 1) independent random vectors with

d
X, X, t=1,..,mwhere X~ N ,u,V) and let {Y,, } be denote a sequence of (k

20



)4 m

. . T e -1 .

x k) random matrices with Y, —C. Then the limiting distribution of Y, ant 18
t=1

the same as that of mC_IX , in other words

m d [
Y 'YX, —)N(mC_l #,mCVIC] j .
t=1

Lemma (23)

P
let {X,,} be asequence of (k x1) random vectors. If X, —>¢, t=1,

m p
...,m.Then Y X, —mc .
t=1
Theorem (24)

P
Let {X,} be a sequence of (k x1) random vectors with X,, —>¢;, t=

p
1,..., m and let {Y,}be a sequence of (k x k) random matrices with Y, >C,, a

. . -1 p -1
nonsingular matrix. Then Y, ant —>mC, ¢;.
t=1

Proof
To proof this, note that the elements of the matrix Y, ! are continuous

functions of the elements of Y,, at Y,, = C;, since CEI exists. Thus, Y, t CEI.

& -1 .
Similarly, the elements of Y, ZX ¢ are sums of products of elements of Y, ! with
t=1

m m
. . . . . -1
those of ZX a¢ - Since each sum is again a continuous function of Y, and ZX i o
t=1 t=1

m -1 m
plim(Yn_IZij:(plimYnj plim > X, :mC'zlgl. n
t=1

n—o n—o n—o =1
Example (25)
p
Let {X,, } be denote a sequence of (k x 1) random vectors with X, —>C;, 1=
l,..., m and let {Y,}be denote a sequence of (k x 1) random vectors with
p

Y, —>c, where ¢ and ¢, are two vectors of constants. Then

(l)plim[zzm iinj:plim > X, tplimY, =mc, tc¢,.
t=1

n—»>o n—oo =1 n—»>o
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!

) plim(X;sz}(plim Ynj plim ) X, =mc',c,.

n—0 t=1 n—»oo n—o =1

Theorem (26)
Suppose that X, =(X,,,...,X,,)  is asymptotically distributed as

N (ﬁl’Vl/n) and Y, =(Yy,,...,Y;,) is asymptotically distributed as
N(u 5 ,V,/n), where 7 and 7, are two fixed matrices, X, and Y ,, are independent.
Consider the two random vectors X =(X,,...,X;) and Y =(Y7,...,Y;)', let

!

9(X)=[g,(X),...,g,(X)] be a vector-valued function with non-zero differentials

G[c’fgj(l()]
| ax.
i X=pu

which is an ¢ x kmatrix, let f(Y)=[f1(Y),..., f; (Y)] be a vector-valued function

with non-zero differentials
[
| ey,
Y=u,

1

which is an / x k matrix. Suppose g(X,) and f(Y,) are independent. Then the
asymptotic  distribution of g(X,)+ f(Y,) also normal with mean
g(u,) + f(u,) and covariance matrix (GV,G"+FV,F)/n.

Proof
p
Since Var(X,)=V,/n — 0 as n—w, it then follows that X, —u,, and
1X, = s, =0, (1),
p
and since Var(Y,)=V,/n— 0, as n—, it then follows that Y , >/, and
” Xn B ﬁz ”: Op(l) .

Now using the Taylor series, approximation result for stochastic processes we have:
g(Xn) = g(ﬁl) + G(Xn - ﬁl) + Zn
where Z,, =0, (|| X, — 1 ||, and

f(Xn):f(ﬁ2)+F(Xn _ﬁ2)+Hn
where H, =0,(| Y, — Iy ||, and this is follows that

g(Xn)+f(Xn):g(ﬁl)+f(ﬁ2)+G(Xn _ﬁ1)+F(Xn _ﬁ2)+ Zn +Hn'

22



Now using Lemma (12) (a), \/;{g(Xn)—kf(Xn)—g@l)—f@z)} and

Jn {G(Xn - ﬁ1)+ F(Xn — U 2)}, will have the same limiting distribution if we
show that

plimn—)oo {\/;(Zn +H, )}: 0.
But since Z,, =0, (| X, —p, |=0,(1) and H, =0,(| Y, — p, [|F0,(1), then
by Definition (4)

Z .
plimi ————+:=0 0
nooo ||l X, — Iad] I n—>

and
VaH, |
n—)OO \/_ 1Y, —H, [

. H,
plim{ ——"*——+ =

However, by assumption \/; ()_( "= ,u) has a finite limiting normal distribution and is

...,
=
=
—
=
<
S
|
I=

o
-t

bounded stochastically,
that is

Vnl|X, -, I=0,0),
and also \/; (X n— M 2) has a finite limiting normal distribution and bounded

stochastically,
that is

VY =y =0,
and therefore we have

plimn%w\/;(zn)zg and plimn%w\/;(Hn):Q,andthisisfollowsthat
plim,_,, Nn(Z, +H,)}=0.

Jnlg(X,)+ £(Y,)-glu, )~ rlw, )
=Vnig(X,)= alu, S+ Vb (¥,) - 1, )
SG{nlx, —u )+ FVa(Y, - i, JSNO.GRG + EF)

Theorem (27)
Suppose that X, =(X,,,...,X,,)" is asymptotically distributed as

Hence

N(u,Vin), where V is a fixed matrix. Consider the random vector

X=X Xp)', let g(X)z[gl(X),...,gg(X)] be a vector-valued function

with non-zero differentials
| 9g;(X)
X,

23
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which is an ¢ x kmatrix, let f(X)=[£;(X),..., f; (X)] be a vector-valued function

with non-zero differentials
L [a00
OX.
l X: H

which is an ¢ x kmatrix. Suppose g(X,) and f(X, ) are independent. Then the
asymptotic distribution of g(X, )+ f(X,,) also normal with mean g(u) + f (1)

and covariance matrix (GVG' + FVE')/n.

Proof
The proof is the same way for proof theorem (26) .
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