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Abstract 

The essence of asymptotic methods is approximation. The main object of this 

thesis is to give a unified derivation of some results and theorems. 

Also, this research deals with asymptotic distributions that is the distributions we 
obtained by letting the time horizon (sample size) tends to infinity. The research 
methodology is theoretical. We obtain some results for the univariate case (for 
example about sequence of random variables ) and the multivariate case (for example 
about sequence of random vectors) about the asymptotic theory. 
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Introduction 

Exact distribution theory is limited to very special cases (normal independent 

identically distributed (i.i.d.) errors linear estimators), or involves very difficult 

calculations. This is too restrictive for applications. By making approximations based 

on large sample sizes, we can obtain distribution theory that is applicable in a much 

wider range of circumstances. These approximations are sometimes quite accurate 

and can often be constructed without a complete specification of the population 

distribution for the data. Suppose )(F xn is the (unknown) cumulative distribution 

function for some statistic based on a sample of size n. If it can be shown that the 

sequence of functions )(F),(F 21 xx , … converges rapidly to a known limit )(F x as n 

tends to infinity, then we might use )(F x as an approximation to )(F xn even for 

moderate values of n. The quality of the approximation depends on the speed of 

convergence, but can be checked by computer simulation. 

The simplest example of this approach `is the average of independent draws 

from a distribution possessing a finite variance. Let  


n
1

1 XX
i in n , where the 

X’s are i.i.d. with population mean = )X( iE and population variance 

= 2)X(Var i . By an easy calculation, we find that nX  has mean μ and 

variance n/2 . Although the exact distribution of nX  depends on the distribution of 

X’s, a simple asymptotic approximation is always available. The cumulative 

distribution function nF  for nX  is quite sensitive to the value of n so we would not 

expect the limit of the sequence 1F , 2F ,… to yield a good approximation to nF  

unless n is very large. But the standardized random variable  /)X(S  nn n  

has mean zero and variance one for every n; its cumulative distribution function, say 

*Fn , is much less sensitive to the value of n. Thus, if we could find the limit *F of the 

sequence *
1F , *

2F , …, we might be willing to use it as an approximation to the 

distribution of nS . The sequence *
1F , *

2F , … necessarily converges to the standard 

normal cumulative distribution function. This leads us to approximate nF  by the 

cumulative distribution function of a )/,( 2 nN   distribution. 
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People may ask; since asymptotic distribution is only an approximation, why 

we are not using the exact distribution instead? Unfortunately, the exact finite sample 

distribution in many cases are too complicated to derive, even for Gaussian processes. 

Therefore, we use asymptotic distribution as alternatives.  

Most econometric methods used in applied economics are asymptotic in the 

sense that they are likely to hold only when the sample size is “large enough”. 

Asymptotic theory involves generalizing the usual notions of convergence for 

real sequences to allow for random variables. It is important to emphasis that limiting 

distributions obtained by central limit theorem (CLT) all involve unknown parameters 

which we seek to estimate. 

The asymptotic distribution was studied by other researchers who worked in 

our field which as the following :  

The asymptotic distribution of the likelihood ratio test that is one technique for 

detecting a shift in the mean of a sequence of independent normal random variables 

derived by (Irvine,1986). The empirical process proof of the asymptotic distribution 

of sample quantiles studied by (Rust,1998). 

The asymptotic  distribution of gumbel statistic in a semi-parametric approach 

(*) derived by (Alves,1999) where this note is an answer to some open problems 

connected with recent developments for appropriate methodologies for making 

inferences on the tail of a distribution function (d.f.).The asymptotic results for the 

linear regression model studied by (Flinn,1999). A general result concerning the large 

sample distribution of Moran I type test statistic  given by (Kelejian & prucha,1999) 

and applied this result to derive the large sample distribution of the Moran I test 

statistic for a variety of important models for which general spatial correlation testing 

procedures are not available. 

A review of basic elements of asymptotic theory provided by (potscher & 

prucha,1999) . Topics included modes of convergence, laws of large numbers and 

central limit theorems. 

The asymptotic distribution of the Euclidean distance between MA models 

studied by(Sarno, 2001). An introduction to asymptotic oncepts in statistics studied by 

(weeks,2003).An introduction to asymptotic concepts in statistics studied by 

(Weeks,2003) .   

The asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) 

linear estimator for stationary invertible vector autoregressive moving average 
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(VARMA) models in the echelon form representation studied by(Dufour & 

Jouini,2004) . General conditions for consistency and asymptotic normality are given. 

A consistent estimator of the asymptotic covariance matrix of the estimator is also 

provided, so that tests and confidence-intervals can easily be constructed. 

The formal properties of corrrelators of eigenvalues in the so-called planar 

limit (semiclassical) of various matrix models in terms of certain algebra-geometric 

data presented by (Bertola,2004). The asymptotic distribution of a set of linear 

restrictions on regression coefficients studied by (Anderson,2004) where reduced rank 

regression analysis provided maximum likelihood estimators of a matrix of regression 

coefficients of a specified rank and of corresponding linear restrictions on such a 

matrix. These estimators depended on the eigenvectors of an “effect” matrix in the 

metric of an error covariance matrix and shown that the maximum likelihood 

estimator of the restrictions can be approximated by a function of the effect matrix 

alone. The procedures are applied to a block of simultaneous equations. The block 

may be over-identified in the entire model and the individual equations just-identified 

within the block. 
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Definition (1) (Fahady &Shamoon,1990) 
Consider distribution functions F1(.), F2(.), … and F(.). Let X1, X2, … and X 

denote random variables (not necessarily on a common probability space) having 

these distributions, respectively. We say that nX  converges in distribution (or in law) 

to X if 

)F()(F lim vvn
n




, for all v which are continuity points of F.  

This is written FFor    XXor    XX
w

n

L

n

d

n  .   

The limiting distribution function, F, is referred to as the asymptotic 

distribution of nX , and provides the basis for approximating the distribution of nX , 

as n increases without bounds. 

In practice when the mean or variance of nX  increase with n, in deriving the 

asymptotic distribution of nX  it is necessary to consider the limiting distribution of 

normalized or rescaled random variable, 
n

nn
n

µ






X
Z , where nμ  and nσ  are 

appropriate constants. 
In general, we would like to say that the distribution of the random variables 

nX  converges to the distribution of X if  

RxxxxPx nn  every for   )F(X)F()X()(F .  
 
Theorem (2) (Serfling,1980) 

Let the distribution functions F, F1, F2, … possess respective characteristic 
functions , 1, 2, … . The following statements are equivalent: 

(i) FF
w

n  (or XX
d

n ); 

(ii)     θθθnn  realeach for  ,   lim   ; 

(iii) ggg   function  continuous boundedeach  for  dF,dF  lim  
 nn

. 

 
Proposition (3)  (Dufour,2003) 

Let { nX } and { nY } be two sequences of random variables such that 

0YX
p

nn   and YY
d

n , and let g : R → R be a continuous function. Then  

(a) YX
d

n ; 

 (b) 0)Y()(X
p

nn  gg ; 

 (c) )Y()(X gg
d

n  . 

Definition (4) (Boik,2004) 

Let { nX } be a sequence of random variables. )1(X pn o  if 0 X
p

n  . That 

is,  
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for every 0ε , 1)|X(|lim 


εP n
n

 

or, equivalently, for every 0ε  and for every  ,0  an integer ),( εn  

Such that if n > ),( εn  then 

 1)|(| εXP n . 

One can say, informally, that )1(X pn o  if nX = o(1) with arbitrarily high 

probability. 
1. Some results for a univariate case about the asymptotic theory 
Lemma (5)  

Let { nX } be a sequence of independent random variables such that 

XX
d

ni  , i = 1, …, m, where X is a random variable. Then 



m

i

d

ni m
1

XX . 

Proof: 

Let )(n be the characteristic function of 


m

i
ni

1

X , for any real θ. Then 





















m

i
nii

n eE 1
X

)(  

and  

    X

n
)(lim mi

n eE  


 

which is the characteristic function of mX and this is implies that  





m

i

d

ni m
1

XX . (by Theorem 2(i),(ii)). 

Theorem (6) 
Let { nX } be a sequence of independent random variables and { nY } be a 

sequences of random variables such that XX
d

ni  , i = 1, …, m and cY
p

n  , where 

X is a random variable and c is a constant not infinity. Then 

(a) cm
m

i

d

nni 
1

XYX ; 

 (b) 



m

i

d

nni m
1

cXYX ; 

(c) 0c if 
X

Y

X
1 



c

md

n

m

i
ni

. 
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Proof  
(a) Choose and fix v such that v–c is a continuity point of )(F X vm . Let 

0 be such that εcv   and εcv   are also continuity points of )(F X vm . 

Then 

    







 

 


m

i
nni

vPvm

i
nni 1YX

YX)(F

1

 

                    

) |Y(| |Y|,YX
1

εcPεcvP nn

m

i
nni 








 



 

              ) |Y(|X
1

εcPεcvP n

m

i
ni 








 



.  

Hence by the hypotheses of the theorem, and by the choice of εcv  ,  

) |cY(|sup limcXsup lim)(F  suplim
1YX

1

εPεvPv n
n

m

i
ni

nn
m

i
nni









 

 


                                 = XFm  ( εcv  ). 

Since cY
p

n , we have 0) |cY(| suplim 


εP n
n

. 

Similarly,  

) |cY(|YXcX
11

εPvPεvP n

m

i
nni

m

i
ni 








 








 



 

and thus 

)(Finf lim)(F

1
YX

X vεcv m

i
nnin

m
 


 . 

Since v – c is a continuity point of FmX(v), and since  may be taken arbitrarily small, 
we have 

  )(F)(F)(Flim cXX
YX

1

vcvv mm
n

m

i
nni


 





. 

This is follows that 

 cm
dm

i
nni  


XYX

1

 (by Definition (1)). 

And to proof the other direction, we have 

Let )(n  be the characteristic function of 



m

i
nni

1

YX , for any real θ. 

Then  













































 



m

i
ni

n

m

i
nni i

i
i

n eEeeE
11
X

Y
YX

)(





  

and  
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   )()(lim mXici
n

n
eEeθ  


  

which is the characteristic function of mX–c and this is implies that  

c-XYX
1

m
dm

i
nni 



 (by theorem (2)(i),(ii)). 

(b) Let 



m

i
nnin cZ

1

)Y(X , and for arbitrary positive constants  and ε , 

consider  

  











 



ε
εPεP

nn

m

i
nin

cY,cYX|Z|
1

 

          









 

ε
εP nn

m

i
ni cY,cYX

1

 

         




















 



ε
PP

n

m

i
ni

cYX
1

. 

For any fixed  , taking limits of both sides of the above inequality, and noting that 

by assumption c
p

nY  and 



m

i

d

ni m
1

XX , we have  






















 




m

i
ni

m

i
ni

n
n

n
PPεP

11

XXlim)|Z(|lim . 

But δ is arbitrary and hence 














m

i
niP

1

X can be made as small as desired by 

choosing a large enough value for δ. Therefore 

0 Zand 0)|Z(|lim
P

nnn εP  . Hence by proposition (3)(a), 




m

i
nin

m

i
ni

11

Xc and YX  will have the same asymptotic distribution given by the 

distribution of mcX. 

(c) Let 







 

 cn

m

i
nin

1

Y

1
XZ

1

, and for arbitrary positive constants 

 and ε , consider   

  















 



ε
εPεP

n
n

m

i
nin

cY,
c

1

Y

1
X|Z|

1

 

                            









 

ε
εP n

n

m

i
ni cY,

c

1

Y

1
X

1
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                         


































 ε

PP
n

n

m

i
ni

cY
cY

X
1

. 

For any fixed δ, taking limits of both sides of the above inequality, and noting that by 

assumption c
p

n Y and XX
1

m
dm

i
ni 



, we have 















































n

m

i
ni

n

m

i
ni

n
n

n
PPεP

cY

X

cY

X

lim)|Z(|lim 11
. 

But δ is arbitrary and hence 






















 

n

m

i
ni

P
cY

X
1

can be made as small as desired by 

choosing a large enough value for δ. Therefore 0)|Z(|lim 


εP n
n

 and 0 Z
P

n . 

Hence by proposition (3)(a), 
c

X

 and 
Y

X
11



m

i
ni

n

m

i
ni

  will have the same asymptotic 

distribution given by the distribution of 
c

Xm
. ■ 

Example (7) 
Suppose that { nX } be a sequence of independent random variables and 

{ nY } be a sequences of random variables such that XX 
d

ni  , i = 1, …, m and 

c
p

nY , where X~ N (µ,σ2) and c is a constant not infinity and suppose that there are 

two constants such as a and b. Then 

(1) )c,( YX
22

1

 mabmaNba
d

n

m

i
ni 










. 

(2) )c,c( YX
2222

1

 bmamabNab
d

n

m

i
ni 











. 

(3) )
c

,
c

( 
Y

X

22

22
1

b

ma

b

ma
N

b

a
d

n

m

i
ni














. 
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Theorem (8) 
Let { nX } and { nY } be two sequences of independent random variables such 

that XX 
d

ni  , i = 1, …, m and YY
d

n , where X and Y are two random variables. 

Suppose nX  and nY are independent for 1n . Then X and Y are independent, and 

(a) Y;X YX
1




m
d

n

m

i
ni  

(b) XY; YX
1

m
d

n

m

i
ni 



 

(c) .
Y

X
 

Y

X
1 md

n

m

i
ni



  

Proof: 

(a) Let )(n  be the characteristic function of 



m

i
nni

1

YX , for every real θ. 

Then  











































 

 n

m

i
ni

m

i
nni iθ

iθiθ

n
eeEeEθ

Y
XYX

11)(  

and taking limits we have: 

    YX
)(lim

iθmiθ

nn
eeEθ 


  

which is the characteristic function of mX+Y, and consequently  

YXYX
1




m
dm

i
nni  (by Theorem (2)(i),(ii)). 

And to proof the other direction, we have 

Let )(n  be the characteristic function of 



m

i
nni

1

YX , for every real θ. 

Then  












































 

 n

m

i
ni

m

i
nni iθ

iθiθ

n
eeEeEθ

Y
XYX

11)(  

and  

    YX
)(lim

iθmiθ

nn
eeEθ



  

which is the characteristic function of mX–Y, and this is implies that  

YXYX
1




m
dm

i
nni  (by Theorem (2)(i),(ii)). 
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(b) Let )(n  be denote the characteristic function of 


m

i
nni

1

YX , for every 

real θ. Then  





























m

i
nnii

n eE 1
YX

)(


 . 

Taking limits we have: 

   XY)(
)(lim

miθ

nn
eEθ 


  

which is the characteristic function of mXY, and consequently  

XYYX
1

m
dm

i
nni 



 (by Theorem (2)(i),(ii)). 

(c) The proof is similar to that given above for (a), (b). ■ 
 
Example (9) 

Suppose that { nX } and { nY } two sequences of independent random 

variables such that XX 
d

ni  , i = 1, …, m and YY
d

n , where X and Y are 

independent such that X~N(µ1,
2
1 ) and Y~N (µ2,

2
2 ) and suppose that there are two 

constants such as a and b. Then 

(1) ),( YX
2
2

22
1

2
21

1

 bmabμmaμNba
d

n

m

i
ni 










. 

(2) ),( YX
2
2

2
1

22
21

1

bmaμmabμNab
d

n

m

i
ni 











. 

 
Theorem (10) ( Velasco , 2001)  

              vector    XXXX
d

n

d

n .           

 
 
Theorem (11) (Johnson & Wichern , 1998)  
              vector ),,(~X),(~X VμNVμN . 

 
Lemma (12) ( Velasco , 2001) 

Let }X{ n and }Y{ n  be sequences of random (k × 1) vectors. Then: 

(a) If 0)YX(
p

nn   and XYXX
d

n

d

n  . 

(b) If XX
d

n  and 0XY0Y
p

nn

p

n  . 
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2. Some results for a multivariate case about the asymptotic theory  .   
 

Lemma (13) 
Let }X{ n  and }Z{ n  be two sequences of (k × 1) independent random vectors 

such that nmnnn 121111
X....XXZ  , nmnnn 222122

X...XXZ   and 

knmknknkn
X....XXZ

21
 . Then n

m

t
nt ZX

1



  

 
 
 
Proof 

nmnn

m

t
nt X...XXX     21

1




 




































































































knm

nm

nm

kn

n

n

kn

n

n

X

X

X

...

X

X

X

X

X

X

2

1

2

22

21

1

12

11

 

n

kn

n

n

knm

nm

nm

kn

n

n

kn

n

n

Z

Z

Z

Z

X

X

X

.

.

.

   

..

..

..

X

X

X

X

X

X

2

1

2

1

2

22

21

1

12

11



























































































 .   

 

Lemma (14) 

Let }X{ n be a sequence of (k × 1) independent random vectors. If XX
d

nt  ; 

t = 1,…, m, then XX 
1




m

t

d

nt m . 

Proof 

Denote the characteristic functions of Xλ and X λ
1

t



m

t
n m  by )(

1
tXλ

θm

t
n



  

and )(
X

θ
m
 , respectively, 

when ),...,( 1  k  is an arbitrary vector of fixed constants and θ is any real. 

By using Theorem (2)(i),(ii) and Theorem (10), we have 
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)(

1
tXλ

θm

t
n



 )(
Zλ

θ
n

          (by Lemma (13)) 

        






























 ini

k

in

Zi
Zi

EE
λ

λ 1ee , 

and  

   












































ii

k

i
ii

k

i
m

t
nt

miθZiθ

n
EEθ

X

X

11

1

ee)(lim   

                                )(e
Xλ

Xλ
θE

m

miθ




   

  RθRθθ
k

mn
m

t
nt








,0,),()(lim
X

X
1

  

             0λ,λ,XλXλ
1

 


k
dm

t
nt Rm  (by Theorem (2)(i),(ii)) 

             XX
1

m
dm

t
nt 



 (by Theorem (10)).  

 

Theorem (15) 
Let }X{ n be a sequence of (k × 1) independent random vectors with 

XX
d

nt  , t = 1,…, m, and let }Y{ n be a sequence of (k × 1) random vectors with 

cY
p

n , where c be a vector of constants not infinity. Then  

(a) cXYX 
1




m

t

d

nnt m ; 

(b) XcXY 
1

 


m

t

d

ntn m . 

Proof 

(a) Choose and fix v such that 



k

i
ii

v
1

c  is a continuity point of  

)(F

1
X

vk

i
iim




. Let 0ε  be such that εv
k

t
ii
 

1

c  and εv
k

i
ii


1

c  are also 

continuity points of )(F

1
X

vk

i
iim




.  



 14 

Denote the distribution functions of 







 



m

t
nnt

1

YX λ  and )cX(λ  m by 









 


m

t
nnt

1
YX

F (v) and )(F )cX( vm  , respectively, 

when ),...,( 1
 k is an arbitrary vector of fixed constants. By using Definition 

(1) and Theorem (10), we have  

  )(F)(F YZ
YX

1

vv
nnm

t
nnt










 





 

                        )(F

11
YZ

vk

i
ini

k

i
ini 


 

  

    ) YZ(
11

vP
k

i
ini

k

i
ini  



 









 


εvP

k

i
ii

k

i
ini

k

i
ini

k

i
ini

1111
 cY, YZ

 










εP

k

i
ii

k

i
ini

11
 cY  

             
















 


εPεvP

k

i
ii

k

i
ini

k

i
ii

k

i
ini

1111
 cYcZ . 

Hence, by the hypotheses of the theorem, and by the choice of  


k

i
iiv

1

cλ , 

)(Fsuplim

11
YλZλ

vk

i
ini

k

i
inin 




 






















εPεvP
k

i
ii

k

i
ini

n

k

i
ii

k

i
ini

n 1111
cYsup imlcZsup iml























εvεv
k

i
ii

m

k

i
ii k

i
ii

k

i
ii 1X1Z

cFcF

11

. 

Similarly, 
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
















 








 


εPvPεvP

k

i
ii

k

i
ini

k

i
ini

k

i
ini

k

i
ii

k

i
ini

111111
cYYZcZ

and thus 

).(FinflimcFcF

1111
YZ1X1Z

vεvεv k

i
ini

k

i
ini

k

i
ii

k

i
ii n

k

i
ii

m

k

i
ii























 

Since 



k

i
iiv

1

cλ  is a continuity point of )(F

1
X

vk

i
iim




, and since  may be taken 

arbitrarily small, we have 




















 
 

k

i
ii

m

k

i
ii

n
vvv k

i
ii

k

i
ii

k

i

k

i
iniini 1X1ZYZ

cλFcλF)(Flim

111 1

 

                                                    )(F

11
λXλ

vk

i
ii

k

i
ii cm 



  

i.e.,               )(F)( Flim )cX(
YXλ

1

vv m
n

m

t
nnt










 





  

  0λ,λ,cXλ YXλ
d

1









 


km

t
nnt Rm  

(by Definition (1)) 

cX YX
d

1
 


m

m

t
nnt  (by Theorem (10)). 

The proof of the other direction is similar to that given above. 

(b) Denote the characteristic functions of 


m

t
ntn

1

XY  and Xcm   by 

)(

1
XY





m

t
ntn

 and )(X  cm  , respectively, when θ is any real. 

By using Theorem (2)(i),(ii), we have 
 

)()( Y
XY

1

θθ
nn

m

t
ntn

Z






  (by Lemma (13)) 

           




















k

i
inin

nn

iθ
iθ

EE 1

ZY
ZY

ee , 

and hence  

     









































k

i
ii

k

i
ii

m

t
ntn

miθiθ

n
eEEθ 11

1

XcZc

XY
e)( lim   

     )(e X
Xm

θE cm
ciθ



   
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              Rθθθ cm
n

m

t
ntn

 



),()(lim X
XY

1

 , it then follows that  

     XXY
1

cm
dm

t
ntn 


 (by Theorem (2)(i),(ii)). ■ 

Example (16) 
Let }X{ n be a sequence of (k × 1) independent random vectors with 

XX
d

nt  , t = 1,…, m, where ),(~X VμN  and let }Y{ n be a sequence of (k×1)  

random vectors with cY
p

n , where c be a vector of constants not infinity. Then 

(1) The limiting distribution of  


m

t
nnt

1

YX  is the same as that of cX m ; that is,  

using Theorem (11), we obtain that  

  0λ,λ,...,λλ 1  k
k R  

   λλ,λ~Xλ VmμmNm  . 

Using the other direction of the Theorem (11), we now find 

 mVμmNm ,~X  

where mV is positive definite because 0λ allfor  λλ0  Vm . Finally, it 

follows that  

 mVμmNm ,c~cX   such that 

 mVμmN
m

t

d

nnt ,cYX
1




. 

 (2) The limiting distribution of 



m

t
ntn

1

XY  is the same as that of Xcm . Note that  

 cc,c~Xc VmμmNm  , and this is follows that  

)cc,c(XY
1

VmμmN
dm

t
ntn 



. 
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Theorem (17) 
Let }X{ n be a sequence of (k × 1) independent random vectors with 

XX
d

nt  , t = 1,…, m, and let }Y{ n be a sequence of (k × 1) independent random 

vectors with YY
d

n , where X and Y are two random vectors. Suppose nX and nY  

are independent for 1n . Then X and Y are independent, and 

(a) YXYX 
1




m

t

d

nnt m ; 

(b) XYXY 
1

 


m

t

d

ntn m . 

Proof: 

(a) Let )(

1
YXλ

θm

t
nnt 







 


 be the characteristic function of 









 


n

m

t
nt YXλ

1

 and let )()YX(   m be the characteristic function of 

)YX(λ  m , for any vector 
k

k R )λ,...,λ(λ 1 and any real θ. 

Using for proof Theorem (2)(i),(ii) and Theorem (10), we have 

)()( )YZ(λ
YXλ

1


nn

n

m

t
nt
















        (by Lemma (13)) 

                              )Y(
e nnZiθ

E


  

                               




























ini

k

i
ini

k

i

iθ

E
YλZλ

11e  

                               





















ini

k

i
ini

k

i

iθiθ

E
YλZλ

11 ee . 

Now taking limits of the above, we have 
         















































 

ii

k

i
ii

k

i
ii

k

i
ii

k

i

m

t
nnt

iθmiθiθiθ

n
EEθ

YλXλYλZλ

YXλ

1111

1

eeee)(lim 

 

                                          





























ii

k

i
ii

k

i

mi

E
YλXλ

11e


 

                                         )(e )YX(λ
)YX(λ 


  m

miE . 
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Therefore, we have 

0λ,λ),YX(λYXλ
1









 



k
dm

t
nnt Rm  (by Theorem 

(2)(i),(ii)). It then follows that  

YXYX
1




m
dm

t
nnt  (by Theorem (10)). 

The proof of the other direction is similar to that given above. ■ 
(b) the proof is similar to that given above for (a).  
 
Example (18) 

Let }X{ n be denote a sequence of (k × 1) independent random vectors with 

XX
d

nt  , t = 1,…, m, and let }Y{ n be denote a sequence of (k × 1)  independent 

random vectors with YY
d

n . Suppose that nX  and nY are independent for 1n . 

Then X and Y are independent such that   11
,~X VμN  and  22

,~Y VμN , and 

the limiting distribution of 



m

t
nnt

1

YX  is the same as that of YX m ; that is, 

note that by taking Theorem (11), we obtain that  

0λ,)λ,...,λ(λ k
1  Rk  

)λλλλ,λλ(~)YX(λ
2121

VVmμμmNm  . 

Using the other direction of the Theorem (11), we now find 

),(~YX
2121

VmVμμmNm   

where 21 VmV  is positive definite since 0λ,λ  kR : 

0λλλλ 21  VVm , it then follows that 

),(YX
2121

1

VmVμμmN
dm

t
nnt 



. 

 

Theorem (19) 
Let }X{ n be a sequence of (k × 1) independent random vectors with 

XX
d

nt  , t = 1,…, m, and let }Y{ n be a sequence of (ω × k) random matrices with 

CY
p

n  . Then XCXY
1

m
dm

t
ntn 



. 
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Proof: 
Let )(

1
XYλ













m

t
ntn

and )(
)XC(λ

θ
m

 be the characteristic functions of 









 



m

t
ntn

1

XY λ  and )XC(λ m , respectively, when ),...,( 1   is an arbitrary 

vector of fixed constants and θ is any real. 

)()( )ZY(λ
XYλ

1


nnm

t
ntn
















        (by Lemma (13)) 

                             























injinj

k

ijnn

θ
iθ

EE

Zλi
)ZY(λ 11

ee

y

, 

and hence 

   



























































 ijij

k

ij
ijij

k

ij
m

t
ntn

miθZiθ

n
EEθ

Xcλcλ

XYλ

1111

1

ee)(lim   

                                   )(e
)XC(λ

)XC(λ
θE

m

miθ




  . 

  0λ,λ),XC(λXYλ
1









 



Rm
dm

t
ntn

(by Theorem(2)(i),(ii)). 

  XCXY
1

m
dm

t
ntn  



 (by Theorem (10)). ■ 

Example (20) 
Let }X{ n be denote a sequence of (k × 1) independent random vectors with 

XX
d

nt  , t = 1,…, m, where  VμN ,~X  and let }Y{ n be denote a sequence of (ω 

× k) random matrices with CY
p

n  . Then the limiting distribution of 


m

t
ntn

1

XY  is 

the same as that of XCm , in other words, 

)CC,C(XY
1




VmμmN
dm

t
ntn

. 

Theorem (21) 
Let }X{ n be a sequence of (k × 1) independent random vectors with 

XX
d

nt  , t = 1,…, m and let }Y{ n be a sequence of (k × k) random matrices with 

CY
p

n  , a nonsingular matrix. Then XCXY
1-

1

1-
m

dm

t
ntn 



. 
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Proof 
Suppose that  

















































kkk

k

kknnk

knn

n

dd

dd

aa

aa

...

..

..

..

...

C  and    

...

.

.

.

...

Y

1

111

1-

1

111

1-
. 

Now using for proof Theorem (2)(i),(ii) and Theorem (10) by denoting the 

characteristic functions of 







 



m

t
ntn

1

1- XYλ and )XC(λ -1m  by 

 )(

1

1-
XYλ













m

t
ntn

 and )(
)XC(λ 1- 

m
, respectively, ,)λ,...,λ(λ 1

k
k R  

Rθ ,0λ  : 

)()(
)ZY(λXYλ

1-

1

1


nn
m

t
ntn

















        (by Lemma (13)) 

                                  


























 injinj

k

i

k

jnn

a
i

EE
Zλi

)ZY(λ 11
1-

ee



, 

by taking limits, we obtain that 

  



















































 ijij

k

i

k

j
ijij

k

i

k

j
m

t
ntn

dmiθZdiθ

n
EEθ

Xλλ

XYλ

1111

1

1-
ee)(lim   

                                           )(e
)XC(λ

)XC(λ
1-

-1



m

miE


 




 . 

Hence, by above, we have 

0λ,λ),XC(λXYλ 1-

1

1- 







 



k
dm

t
ntn

Rm  (by Theorem 

(2)(i),(ii)), and this is follows that 

XCXY
1-

1

1-
m

dm

t
ntn 



 (by Theorem (10)). ■ 

 

Example (22) 
Let }X{ n be denote a sequence of (k × 1) independent random vectors with 

XX
d

nt  , t = 1,…, m where  VμN ,~X  and let }Y{ n be denote a sequence of (k 



 21 

× k) random matrices with CY
p

n  . Then the limiting distribution of 



m

t
ntn

1

1
XY  is 

the same as that of XC 1m , in other words  






 







 ]C[C,CXY

1-1-1

1

1
VmμmN

dm

t
ntn

.  

 
 

Lemma (23) 

let }X{ n  be a sequence of (k ×1) random vectors. If cX
p

nt  ,             t = 1, 

…, m. Then 



m

t

p

nt m
1

cX  . 

Theorem (24) 

Let }X{ n  be a sequence of (k ×1) random vectors with 1cX
p

nt  ,       t = 

1,…, m and let }Y{ n be a sequence of (k × k) random matrices with 2CY
p

n , a 

nonsingular matrix. Then  1
1-

2
1

1
cCXY m

pm

t
ntn 




. 

 

Proof  

To proof this, note that the elements of the matrix 
1Y

n  are continuous 

functions of the elements of nY  at 2CY n , since 
1

2C
 exists. Thus, 

1
2

1 CY  n . 

Similarly, the elements of 



m

t
ntn

1

1
XY  are sums of products of elements of 

1Y
n  with 

those of 


m

t
nt

1

X . Since each sum is again a continuous function of 
1Y

n  and 


m

t
nt

1

X ,  

1
1-

2
1

1

1

1
cCX limpY limpXY limp m

m

t
nt

n
n

n

m

t
ntn

n




























. ■ 

 

Example (25) 

Let }X{ n be denote a sequence of (k × 1) random vectors with 1cX
p

nt  , t = 

1,…, m and let }Y{ n be denote a sequence of (k × 1) random vectors with 

2cY
p

n  where c1 and c2 are two vectors of constants. Then  

(1) 21
11

ccY limpX limpYX limp 







 

 

m
m

t
n

n
nt

n

m

t
nnt

n

. 
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(2) 12
11

ccX limpY limpXY limp 

















 



m
m

t
nt

n
n

n

m

t
ntn

n

. 

 

Theorem (26) 
Suppose that )X,...,(XX 1  knnn  is asymptotically distributed as 

)/,(
11

nVμN  and )Y,...,(YY 1  knnn  is asymptotically distributed as 

)/,( 22
nVμN , where V1 and V2 are two fixed matrices, nn Y and X are independent. 

Consider the two random vectors )X,...,(XX 1  k and )Y,...,(YY 1  k , let 


 ])X(),...,X([)X( 1 ggg  be a vector-valued function with non-zero differentials 

1
X

j
 

X

)X(
G

μi 

















g
 

which is an k matrix, let 


 )]Y(...,),Y([)Y( 1 fff be a vector-valued function 

with non-zero differentials 

2
Y

j
 

Y

)Y(
F

μi

f



















 
which is an k   matrix. Suppose  and  )X( ng )Y( nf  are independent. Then the 

asymptotic distribution of )Y()X( nn fg  also normal with mean 

)()(
21

μfμ g  and covariance matrix nVV )/FFG(G 21
 . 

 

Proof 

Since 0/V)XVar( 1  nn  as n→∞, it then follows that 
1

X μ
p

n , and  

)1(||X||
1 pn oμ  , 

and since 0/)YVar( 2  nVn , as n→∞, it then follows that 
2

Y μ
p

n , and  

)1(||Y||
2 pn oμ  . 

Now using the Taylor series, approximation result for stochastic processes we have: 

nnn μμ Z)X(G)()X(
11
 gg  

where ||X(||Z
1

μo npn  , and 

nnn μμff H)Y(F)()Y(
22
  

where ||Y(||H
2

μo npn  , and this is follows that  

nnnnnn μμμfμf HZ)Y(F)X(G)()()Y()X(
2121

 gg . 
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Now using Lemma (12) (a),         
21

YX μfμfn nn  gg  and 

    
21

YFXG μμn nn  , will have the same limiting distribution if we 

show that  

   0HZlimp  nnn n . 

But since )1(||X(||Z
1 pnpn oμo   and )1(||Y(||H

2 pnpn oμo  , then 

by Definition (4) 

0
||X||

Z
plim

1














 μn

n

n

        or         0
||X||

Z
limp

1














 μn

n

n

n

n

. 

and  

0
||Y||

H
plim

2














 μn

n

n

       or         0
||Y||

H
limp

2














 μn

n

n

n

n

. 

However, by assumption  μn n X  has a finite limiting normal distribution and is 

bounded stochastically,  
that is 

)1(||X||
1 pn oμn  , 

 and also  
2

Y μn n   has a finite limiting normal distribution and bounded 

stochastically,  
that is  

)1(Y
2 pn oμn   

and therefore we have  

  0Zlimp  nn n    and      0Hlimp  nn n , and this is follows that  

   0HZlimp  nnn n .  

Hence 

        
21

YX μfμfn nn  gg  

         
21

YX μffnn nn  gg  

       .FFGG,0NYFX G 2121
 VVμnn

d

nn

d

 

Theorem (27) 
Suppose that )X,...,(XX 1  knnn  is asymptotically distributed as 

)/,( nVμN , where V is a fixed matrix. Consider the random vector 

)X,...,(XX 1  k , let   )X(...,),X()X( 1 ggg  be a vector-valued function 

with non-zero differentials 

μi 















X

j
 

X

)X(
G

g
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which is an k matrix, let   )X(...,),X()X( 1 fff be a vector-valued function 

with non-zero differentials 

μi

f



















X

j
 

X

)X(
F  

which is an k matrix. Suppose  and  )X( ng )X( nf  are independent. Then the 

asymptotic distribution of )X()X( nn fg  also normal with mean )()( μfμ g  

and covariance matrix nVV )/FFG(G  . 

Proof 
The proof is the same way for proof theorem (26)  . 
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