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Abstract: In the last four decades, Chaos has been
studied intensively as an interesting practical
phenomenon. Hence, it is considered to be one of the
most important branches in mathematics science that
deals with the dynamic behavior of systems which are
sensitive to the initial conditions. It has therefore been
used in many scientific applications in the sciences of
chemistry, physics, computers, communications,
cryptography and engineering as well as in bits generators
and psychology. However, there are many issues that
need to be considered and highlighted such as future
prediction, computational complexities and unstable
behavior of dynamic system. The dynamic system must
contain three characteristics in order to be considered a
chaotic system which is first, to be sensitive to the initial
conditions; second to have dense periodic orbits and
finally to be topologically mixing. In the previous work,
we studied the fixed point of a modified Jerk Map with
the form MJa, b = (y-ax+by2) in order to find the
contracting and expanding area of this map as well as to
define the area in which the fixed points of attracting,
repelling or saddle are located. In this study, we continue
to address the same problem by modified Jerk Map. We
prove that it has a positive Lypaunov exponent if |a| =1
and has sensitivity dependence to initial condition if |a|>1
and we give an estimate of topological entropy. Finally,
to simulate our equations and obtain related results, we
have used MATLAB program by implementing a
Lypaunov exponent and drawing the sensitivity of MJa, b.

INTRODUCTION

The dynamical system is a theory that has mostly
been studied as an abstract concept subject in branches of
Mathematics, Physics and Computer Science[1]. Mostly,
it is considered Chaotic according to either the metric

properties or topology of the system[2]. Guirao and
Lampart[3] addressed how three-period orbits with a
dynamical system emphasize that the dynamical system
is chaotic. Hence, chaos can generally be defined as an
existing  state  between  a  specific  and  randomized
state[4].
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One of the most widely accepted and popular
definitions of anarchy was defined by R.L. Devaney. In
this definition, the systems must be based on exhibit
topological transitivity sensitive dependency to initial
conditions and dense periodic orbits[5]. Later, several
works such as Hunt and Ott[4] and Dai[6] were
implemented to prove that if a system is transitive with
dense periodic orbits then it should obviously show
sensitivity dependency to an initial condition.

Lyapunov defines the Chaos as follows: the
continuously differentiable map  can be chaotic if and
only if the    has a positive Lyapunov exponent  and if it
is topologically transitive[4, 7]. Chaos has been studied
intensively as an interesting practical phenomenon in the
last four decades. Hence, it is considered as one of the
most important branches in mathematics science and also
can be used in many significant applications in the
sciences of computers and cryptography[8], bits
generators[9, 10], Ecology[11], Economy[9, 10, 12], Biology[13, 14]

and Communications[15, 16].
The Lyapunov exponents give the average

exponential  rate  of  convergence  or  divergence  for 
near orbits in the phase-space. Thus, Chaotic will be
defined  for  any  dynamics  system  containing  at  least
one positive Lyapunov’s exponent. Any small initial
differences initially in a system may affect its ability,
consequently leading to less predictability. The dynamics
system  becomes  unpredictable  with  the  magnitude  of
the exponent indicating the time scale[17]. One of the
important measures that are used to measure the
complexity of the dynamics system is topological entropy. 
It  represents  the  exponential  growth  rate  of the
number of distinguishable orbits iterates. It must,
therefore be a non-negative real number[18].

In general, sensitivity is employed to nonlinear
equations models. The idea of sensitivity is derived from
the effect of the butterfly. The reason behind it is that lost
patterns and the great effects of inputs are as marginal or
negligible as the flap of the butterfly wings. Any change
in initial condition, even if it were small, may lead to an
undesired result. It is therefore, impossible to predict
future behavior. However, this does not mean that the
system is not deterministic[2]. Mendoza et al.[19] which is
referred to Sprott[20] presented a new form in the explicit
third order called Jerk Map as in the following Eq. 1:

(1) ... . ..x J x, x , x

In term of physics, it mean that the Jerk Map is 
presented as a third derivative of the position with respect
to time. In other words, according to Eq. 1, x”’ is the third
derivative of x that represents the rate of change of the
acceleration in a mechanical system. Jerk dynamics can
be described by a set of three first-order synchronous

differential equations where the dependent variables are
the position x, velocity x˙ and acceleration x¨. It is
generally as follows[19]:

(2).dx
x u

dt
 

(3)
2

..
2

d x
x c

dt
 

(4) 
3

... .. .
3

d x
x -Ax -Bx +Q x

dt
 

Sprott  called  Eq.  4,  the  last  of  these  three
equations  as  the  Jerk  equation[20]  where  the 
parameters A and B are numerical constantsand Q(x) is a
nonlinear   function.   As   is   customary,   the   Jerk  
Map  is a 3-D dynamical  system. In our previous research
by Al-Hashemi et al.[21], we transformed Jerk Map 3-D
dynamical system into a 2-D dynamical system to reduce
the computational time and space based on Eq. 5 as
follows:

(5)a, b 2

y
MJ

ax+by

 
   

where, variables  and  are the states and prime indicates as
differentiation. The work addresses and studies the fixed 
points  of  DMJa, b  as  well  as  its  general properties. It
also  found the contracting and expanding area of this
map and is thus made to determine the fixed points of
attracting, repelling or saddle. Continuing with the
previous work, the proposing study aims to prove the
properties of chaotic in dynamical system including
sensitivity, Lyapunov exponents and topological entropy. 

MATERIALS AND METHODS

Lyapunov exponents: In the first instance, Lyapunov
exponents is developedas follows: let F be a continuous
differential map at x, œx0X in direction u. Also Lyapunov
exponent of a map F is defined by:

(6)  n
x

n

1
L x,u lim ln DF u

n
 

whenever the limit exists. In higher dimensions, map has
Lyapunov exponents, based on:

(7)       1 1 2 1 3 3 n nL x, u , L x, u , L x, u , ..., L x, u   

for a minimum Lyapunov exponent that is:

(8)        1 1 2 2 n nL x, u max L x, u , L x, u , ..., L x, u   
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where u = (u1, u2, ..., un)
[22]. So, we proposed a new

important  theorem  of  Lyapunov  exponents  as  follows:

Proposition (1): For 0R2, if |a| = 1, y… and by
x

y
 a

b

then the MJa, b has positive Lyapunov exponents.> a

Proof: Let the Lyapunov exponents of MJa, b given2x
R

y


by the Eq. 9 as follows:

(9)
n

1 1 a,b 1
n

x x1
L , lim ln DMJ

y yn

    
      

    

From proposition (3-6) by  where y… .1
2

1
 


a

b

Continuous, if |λ1|<1, then:

(10)

 

n

1 1 a,b 1
n

2

x x1
L , lim ln DMJ

y yn

ln by by -a



      
         

      



by hypothesis L1>0. So: if |λ1|>1, then:

(11)

 

n

2 2 a,b 2
n

2

x x1
L , lim ln DMJ <

y yn

ln by by -a



      
        

      



This Lyapunov exponent L±(x, ν) = max { (x,1L

v1) (x, v2) hence, Lyapunov exponent of MJa, b is2L

positive. In order to implement the Lyapunov exponents
dependence on the initial condition of a map, the points
(xi, yi) are changed or fixed where, i = 1, 2 control
parameters (a, b). MATLAB program is used to simulate
and  obtain  results  as  illustrated  in  Table  1 and 2. In
Table 1, all the values of parameter a are <1 and the
parameter b  is  set  as 0.05, since, it may not may affect
the results. So, when |a|<1, all Lyapunov exponents
results are negative.

In Table 2, all the values of parameter a are set to be
1 or more than 1 and the parameter  is set as 0.005, since,
it may not affect the results. So, wherever |a|>1, all
Lyapunov exponent results are positive but when |a| = 1,
there are two Lyapunov exponents results; one is positive
and the other is negative.

Topological entropy: In this study, the topological
entropy is defined as follows: let F: X6X be a continuous
map of a compact metric space X for 0>0 and n0Z+, we

Table 1: |a|<1
A B (x, y) L1 L2

0.99 0.05 (0.1,0.2) -0.0050152848 -0.0050350510
0.79 0.05 (0.1,0.2) -0.1178607200 -0.1178616130
0.59 0.05 (0.1,0.2) -0.2638161836 -0.2638165585
0.39 0.05 (0.1,0.2) -0.6189371307 -0.6189372253
-0.99 0.05 (0.1,0.2) 0.0049733468- -0.0050769890
-0.79 0.05 (0.1,0.2) -0.1178610782 -0.1178612553
-0.59 0.05 (0.1,0.2) -0.2638163575 -0.2638163846
-0.39 0.05 (0.1,0.2) -0.4708042671 -0.4708042727

Table 2: |a|>1 or |a| = 1
A B (x,y) L1 L2

1.001 0.005 (0.1,0.2) 0.0039907258 0.0039774438
1.004 0.005 (0.1,0.2) 0.0019976051 0.0019944162
1.008 0.005 (0.1,0.2) 0.0039907258 0.0039774438
1 0.005 (0.1,0.2) 0.0000004999 -0.0000004999
-1.001 0.005 (0.1,0.2) 0.0009925325 0.0000069679
-1.004 0.050 (0.1,0.2) 0.0030486413 0.0009433799
-1.008 0.050 (0.1,0.2) 0.0071595456 0.0008086240

say Edx is an (n, 0) separated set, if for every x, y0E,
then exists, i.e., 0#i# n such that f i(x), f i (y))>0 then the
topological  entropy  of  f,  denoted  by  htop(f)  is  defined
to be:

(12)   top n
n n

1
h f lim limsup log n,

n 

   
 

where, N (n,  0)  is  the  maximum  cardinal  of  all (n, 0)-
separated sets[23]. Thus, we proposed two new important
theorems of topological entropy as follows:

Theorem (1): Let the MJa, b: R
26R2 be a continuous map

htop|DMJa, b|$log|λ| where, λ is the largest eigen value of
DMJ(v) where ν0R2.

Proposition (2): If a>0, then: htop|MJa, b|> log (a2+a+1).
1

2

Proof: Since:
(13)2 2a+1+ a +a+1 a +a+1

so:

(14)2 2 2 2by b y -2bya+a a +a+1 

therefore,
2

1log >log a +a+1

then:

(15) 2
top a, b

1
h MJ > log a +a+1

2

According to theorem (3-2) by:

Theorem (2): Let MJa, b: R
26R2 be

2 2top a,b a,bx R LC T R
h MJ lag max max det DMJ L

 


Proposition (3): The upper estimate of topological
entropy of MJa, b IS htop|MJa, b|#log |a|. By theorem (3-2)
we get:
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 2 2top a,b a, bx R LC T R
h MJ < log max max det DMJ x L log a

 


(16)
RESULTS AND DISCUSSION

Sensitive dependence on initial condition: This section
defines the sensitive dependence on initial condition as
follows:

Let X be a compact metric space and T a continuous
map. A dynamical system (X, T) has sensitivity
dependence on initial conditions if ›δ>0 such that, for
x0X and each 0>0, there is y0X with (x, y)< and n0N
such that (Tnx, Tny)>δ[2].

So, we proposed one new important theorem of the
sensitive dependence on initial condition as follows:

Proposition (4): If |a|>1 then, MJa, b has a sensitive
dependence on initial condition.

Proof: Let:

1 2

2

x
X R

x

 
  
 

since:

(17)  2

a,b 2
1 2

x
MJ x

ax +bx



if |x|#1 by definition as well as by hypothesis:

(18)  2
a,b

1

x
MJ x <

ax

and

(19) 
 

12
a,b 2

1

ax
MJ x <

a x





that is:

(20) 
 
 

n 1

1n
a,b n

1

a x
MJ x <

a x





thus:

 

 

n
a,b

1 2

2

if a 1, n , then: MJ x

y
Let y R such that d x, y <

y

  

  

(21)        2 22
a,b a,b 2 1d MJ x .MJ y x + ax 

(22)

         
          
       

22 22 2
a,b a, b 1 1

2 2n 1 nn n
a, b a, b 1 1

2n n 2n 2 n
a, b a, b 1

d MJ x . MJ y ax + a x

d MJ x . MJ y a x + a x

d MJ x . MJ y a +a x





  

  



Fig. 1: a = 0.99, b = 0.005, points (1.1, 1.2) and (1.2, 1.3)

Fig. 2: a = 0.98, b = 005, points (1.1, 1.2)  and (1.2, 1.3)

Fig. 3: a = 0.99, b = 0.5, points (0.2, 0.3) and (0.3, 0.4)

hence, MJa, b has    n n
a,b a, bif a >1 and n , d MJ x . MJ y 

a sensitive dependence on initial condition. In order to
simulate and obtain results, for |x|>1, the iterates of MJa,

b are diverge. Thus, its dependence on initial condition is
sensitive (Fig. 1-6). As well, studying the sensitive
dependence on map initial conditions is done by changing 
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Fig. 4: a = 1.00001,  b = 0.5, points  (0.1, 0,2) and (0.2,
0.4)

Fig. 5: a = 1.0000006,   b = 0.5, points (0.1, 0.1) and (0.2,
0.2)

Fig. 6: a = 1.00099, b = 0.05, points (0.1, 0.2) and (0.2,
0.3)

the points (xl, yl) where, i = 1, 2 control parameters (a, b).
For this purpose, the MATLAB program is used as
illustrated in Fig. 1-6.

CONCLUSION

Chaos has many issues that have to be considered
when it is employed for a dynamic system that includes

future predictability, computational complexities and
unstable behavior. Although, there were many previous
studies that addressed to prove the chaos in dynamic
systems, yet, these studies generally, dealt with (3-D)
systems and some of them dealt with the (2-D) systems.
Moreover, they did not address all the Chaos
characteristics and prove them by means of dynamic
systems which we addressed and managed to prove in this
research. In our previous paper, we developed a nonlinear
function approach by translating 3-D to 2-D of dynamical
behavior of such modified Jerk Map which was adopted
in this research in order to prove the chaotic properties of
the dynamic systems. In case that the sensitive
dependence on initial condition of MJa, b is satisfied when
|a|>1 and n64. 

    n n
a, b a,bd MJ x . MJ y 

We also proved that MJa, b either had two positive
Lyapunov exponents if |a|>1 or had one positive and
another negative value if |a| = 1. Finally, if a>0 the
topological entropy of MJa, b = htop |MJa, b|$log|λ|> 1/2log
(a2+a+1) as well as upper estimate of topological entropy
of MJa, b is htop|MJa,b|#log|a|. We then also simulated our
study by implementing it in practice using the MATLAB
program. The obtained results were identical to what was
proven mathematically.

RECOMMENDATION

As future work, we can develop our study by
employing one of the optimization methods in order to
obtain more accurate results.
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