
In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

The outlines of this lecture

 Adding a Method to the Vehicle Class
 Returning from a Method
 Returning a Value
 Using Parameters in the Method
 Adding a Parameterized Method to Vehicle

Classes and Methods:
 As explained, instance variables and methods are the constituents of classes. So far,
the Vehicle class contains data, but no methods. Although data-only classes are
perfectly valid, most classes will have methods. Methods are subroutines that
manipulate the data defined by the class and, in many cases, provide access to that
data.
In most cases, other parts of the program will interact with a class through its methods.
A method contains one or more statements. In well-written Java code, each method
performs only one task. Each method has a name, and it is this name that is used
to call the method.
 In general, you can give a method whatever name you please. However, remember
that main() is reserved for the method that begins execution of your program. Also,
don’t use Java’s keywords for method names.

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

A method will have parentheses after its name. For example, if a method’s name is
getval, it will be written getval() when its name is used in a sentence. This notation
will help you distinguish variable names from method names.
The general form of a method is shown here:

type name(parameter-list) {
// body of method
}

Here, type specifies the type of data returned by the method. This can be any valid
type, including class types that you create. If the method does not return a value, its
return type must be void. The name of the method is specified by name. This can be
any legal identifier other than those already used by other items within the current
scope. The parameter-list is a sequence of type and identifier pairs separated by
commas. Parameters are essentially variables that receive the value of the arguments
passed to the method when it is called.
If the method has no parameters, the parameter list will be empty.

Adding a Method to the Vehicle Class
As just explained, the methods of a class typically manipulate and provide access to
the data of the class. Recall that main() in the preceding examples computed the
range of a vehicle by multiplying its fuel consumption rate by its fuel capacity. While
technically correct, this is not the best way to handle this computation. The calculation
of a vehicle’s range is something that is best handled by the Vehicle class itself.
The reason for this conclusion is easy to understand: the range of a vehicle is
dependent upon the capacity of the fuel tank and the rate of fuel consumption, and
both quantities are encapsulated by Vehicle. By adding a method to Vehicle that
computes the range, you are enhancing its object-oriented structure. To add a method
to Vehicle, specify it within Vehicle’s declaration. For example, the following version
of Vehicle contains a method called range() that displays the range of the vehicle.

// Add range to Vehicle.
class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// Display the range.
void range() {
System.out.println("Range is " + fuelcap * mpg);
}
}

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

class AddMeth {
public static void main(String args[]) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
int range1, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;
sportscar.mpg = 12;
System.out.print("Minivan can carry " + minivan.passengers +". ");

minivan.range(); // display range of minivan

System.out.print("Sportscar can carry " + sportscar.passengers +". ");
sportscar.range(); // display range of sportscar.
}
}
This program generates the following output:
Minivan can carry 7. Range is 336
Sportscar can carry 2. Range is 168
Let’s look at the key elements of this program, beginning with the range() method
itself.
The first line of range() is
void range() {

The range() method is contained within the Vehicle class. Notice that fuelcap and
mpg are used directly, without the dot operator.
This line declares a method called range that has no parameters. Its return type is
void. Thus, range() does not return a value to the caller.

The body of range() consists solely of this line:

System.out.println("Range is " + fuelcap * mpg);

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

This statement displays the range of the vehicle by multiplying fuelcap by mpg. Since
each object of type Vehicle has its own copy of fuelcap and mpg, when range() is
called, the range computation uses the calling object’s copies of those variables.
The range() method ends when its closing curly brace is encountered. This causes
program control to transfer back to the caller.
Next, look closely at this line of code from inside main():

minivan.range();

This statement invokes the range() method on minivan. That is, it calls range()
relative to the minivan object, using the object’s name followed by the dot operator.
When a method is called, program control is transferred to the method. When the
method terminates, control is transferred back to the caller, and execution resumes
with the line of code following the call. In this case, the call to minivan.range()
displays the range of the vehicle defined by minivan.
In similar fashion, the call to sportscar.range() displays the range of the vehicle
defined by sportscar. Each time range() is invoked, it displays the range for the
specified object.
There is something very important to notice inside the range() method: the instance
variables fuelcap and mpg are referred to directly, without preceding them with an
object name or the dot operator. When a method uses an instance variable that is
defined by its class, it does so directly, without explicit reference to an object and
without use of the dot operator. This is easy to understand. A method is always
invoked relative to some object of its class. Once this invocation has occurred, the
object is known. Thus, within a method, there is no need to specify the object a second
time. This means that fuelcap and mpg inside range() implicitly refer to the copies
of those variables found in the object that invokes range().

Returning from a Method
In general, there are two conditions that cause a method to return.
- First, as the range() method in the preceding example shows, when the method’s
closing curly brace } is encountered.
- Second is when a return statement is executed. There are two forms of return:

 one for use in void methods (those that do not return a value) and,
 Second for returning values.

In a void method, you can cause the immediate termination of a method by using this
form of return:

return ;

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

When this statement executes, program control returns to the caller, skipping any
remaining code in the method. For example, consider this method:

void myMeth() {
int i;
for(i=0; i<10; i++) {
 if(i == 5) return; // stop at 5
System.out.println();
 }
}

Here, the for loop will only run from 0 to 5, because once i equals 5, the method
returns. It is permissible to have multiple return statements in a method, especially
when there are two or more routes out of it. For example:

void myMeth() {
// ...
if(done) return;
// ...
if(error) return;
}

Here, the method returns if it is done or if an error occurs. Be careful, however,
because having too many exit points in a method can destructor your code; so, avoid
using them casually. A well-designed method has well-defined exit points.
To review: a void method can return in one of two ways—its closing curly brace is
reached, or a return statement is executed.

Returning a Value
You can use a return value to improve the implementation of range(). Instead of
displaying the range, a better approach is to have range() compute the range and
return this value. Among the advantages to this approach is that you can use the value
for other calculations. The following example modifies range() to return the range
rather than displaying it.

// Use a return value.
class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// Return the range.

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

int range() {
return mpg * fuelcap;
}
}

class RetMeth {
public static void main(String args[]) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
int range1, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;
sportscar.mpg = 12;

// get the ranges
range1 = minivan.range();
range2 = sportscar.range();

System.out.println("Minivan can carry " + minivan.passengers +" with range of " +
range1 + " Miles");

System.out.println("Sportscar can carry " + sportscar.passengers +" with range of " +
range2 + " miles");
}
}

The output is shown here:

Minivan can carry 7 with range of 336 Miles
Sportscar can carry 2 with range of 168 miles

In the program, notice that when range() is called, it is put on the right side of an
assignment statement. On the left is a variable that will receive the value returned by

range().

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

Thus, after
range1 = minivan.range();

executes, the range of the minivan object is stored in range1.

Notice that range() now has a return type of int. This means that it will return an
integer value to the caller. The return type of a method is important because the type
of data returned by a method must be compatible with the return type specified by the
method. Thus, if you want a method to return data of type double, its return type must
be type double.

Specifically, there is no need for the range1 or range2 variables. A call to range()
can be used in the println() statement directly, as shown here:

System.out.println("Minivan can carry " + minivan.passengers +" with range of
" + minivan.range() + " Miles");

In this case, when println() is executed, minivan.range() is called automatically and
its value will be passed to println(). Furthermore, you can use a call to range()
whenever the range of a Vehicle object is needed. For example, this statement
compares the ranges of two vehicles:

if(v1.range() > v2.range()) System.out.println("v1 has greater range");

Using Parameters in the Method
It is possible to pass one or more values to a method when the method is called. As
explained, a value passed to a method is called an argument. Inside the method, the
variable that receives the argument is called a parameter. Parameters are declared
inside the parentheses that follow the method’s name. The parameter declaration
syntax is the same as that used for variables.
A parameter is within the scope of its method, and aside from its special task of
receiving an argument, it acts like any other local variable.

Here is a simple example that uses a parameter. Inside the ChkNum class, the method
isEven() returns true if the value that it is passed is even. It returns false otherwise.
Therefore, isEven() has a return type of boolean.

// A simple example that uses a parameter.
class ChkNum {
// return true if x is even

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

boolean isEven(int x) {
if((x%2) == 0) return true;
else return false;
}
}

class ParmDemo {
public static void main(String args[]) {

ChkNum e = new ChkNum();

if(e.isEven(10)) System.out.println("10 is even.");
if(e.isEven(9)) System.out.println("9 is even.");
if(e.isEven(8)) System.out.println("8 is even.");
}
}

Here is the output produced by the program:
10 is even.
8 is even.

In the program, isEven() is called three times, and each time a different value is
passed. Let’s look at this process closely. First, notice how isEven() is called. The
argument is specified between the parentheses. When isEven() is called the first time,
it is passed the value 10. Thus, when isEven() begins executing, the parameter x
receives the value 10. In the second call, 9 is the argument, and x, then, has the value
9. In the third call, the argument is 8, which is the value that x receives. The point is
that the value passed as an argument when isEven() is called is the value received by
its parameter, x.

Adding a Parameterized Method to Vehicle
You can use a parameterized method to add a new feature to the Vehicle class: the
ability to compute the amount of fuel needed for a given distance. This new method
is called fuelneeded(). This method takes the number of miles that you want to drive
and returns the number of gallons of gas required. The fuelneeded() method is
defined like this:

double fuelneeded(int miles) {
return (double) miles / mpg;
}

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

Notice that this method returns a value of type double. This is useful since the amount
of fuel needed for a given distance might not be an even number.
The entire Vehicle class that includes fuelneeded() is shown here:

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// Return the range.
int range() {
return mpg * fuelcap;
}

// Compute fuel needed for a given distance.

double fuelneeded(int miles) {
return (double) miles / mpg;
 }
}

class CompFuel {
public static void main(String args[]) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
double gallons;
int dist = 252;

// assign values to fields in minivan

minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar

sportscar.passengers = 2;
sportscar.fuelcap = 14;
sportscar.mpg = 12;

gallons = minivan.fuelneeded(dist);

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

System.out.println("To go " + dist + " miles minivan needs " +gallons + " gallons of
fuel.");

gallons = sportscar.fuelneeded(dist);

System.out.println("To go " + dist + " miles sportscar needs " +gallons + " gallons of
fuel.");
}
}
The output from the program is shown here:

To go 252 miles minivan needs 12.0 gallons of fuel.
To go 252 miles sportscar needs 21.0 gallons of fuel.

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

Example:

Calculator class doesn’t have variables, and have two methods, add (to add two
integers’ numbers), and great (to display name). write java code that represent the
Calculator class in addition to main program.

class Calculator {
 // Method to add two integers
 public int add(int a, int b) {
 return a + b;
 }

 // Method to display a message
 public void greet(String name) {
 System.out.println("Hello, " + name + "!");
 }
}

public class Main {
public static void main(String[] args) {

Calculator myCalc = new Calculator(); // Create an object
int sum = myCalc.add(5, 3); // Call the add method
System.out.println("Sum: " + sum); // Output: Sum: 8

myCalc.greet("Alice"); // Call the greet method
 // Output: Hello, Alice!
 }
}

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

Example
Student class have variables (rollno and two marks), and have one method, total
(without parameters), return the float computing the adding of two marks. write java
code that represent the Student class in addition to main program.

class student{
int rollno;
float marks1,marks2;
float total(){
return(marks1+marks2); } }

class studentCreate{
public static void main(String args[]){
float totalmarks;

//one student with rollno=25, marks=81, marks2=85 is created
student student1=new student();
student1.rollno=25;
student1.marks1=81;
student1.marks2=85;

//second student with rollno=26, marks=80. marks2=95 is created
student student2=new student();
student2.rollno=26;
student2.marks1=80;
student2.marks2=95;

//calculate marks of student1 by calling total() of student class
totalmarks=student1.total();
System.out.println("total marks="+ totalmarks);

//claculate marks of student2 by calling total() of student class
totalmarks=student2.total();
System.out.println("total marks="+totalmarks);
}
}

/*Output:
total marks=166.0
total marks=175.0*/

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

Example

public void accelerate() {

 speed += 5;}

public void decelerate () {

 speed -=5; }

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

Example

Definition of a Dog Class

public class Dog
{
public String name;
public String breed;
public int age;

public void writeOutput()
{
System.out.println("Name: " + name);
System.out.println("Breed: " + breed);
System.out.println("Age in calendar years: " + age);
System.out.println("Age in human years: " +getAgeInHumanYears());
System.out.println(); }

public int getAgeInHumanYears()
{
int humanAge = 0;

if (age <= 2)
{ humanAge = age * 11; }
else
{ humanAge = 22 + ((age-2) * 5); }
return humanAge;
}
}

Using the Dog Class and its Methods

public class DogDemo
{
public static void main(String[] args) {

Dog balto = new Dog();
balto.name = "Balto";
balto.age = 8;
balto.breed = "Siberian Husky";
balto.writeOutput();

In Object-Oriented Programming (OOP), a class serves as a blueprint or template for creating
objects. It defines the structure and behavior that objects of that class will possess.

Dog scooby = new Dog();
scooby.name = "Scooby";
scooby.age = 42;
scooby.breed = "Great Dane";

System.out.println(scooby.name + " is a " + scooby.breed + ".");
System.out.print("He is " + scooby.age + " years old, or ");

int humanYears = scooby.getAgeInHumanYears();
System.out.println(humanYears + " in human years."); } }

Sample Screen Output

Name: Balto
Breed: Siberian Husky
Age in calendar years: 8
Age in human years: 52
Scooby is a Great Dane.
He is 42 years old, or 222 in human years.

