
Introduction to Object-Oriented Programming
At the heart of Java’s design philosophy is Object-Oriented Programming. OOP is a
paradigm that uses “objects” — entities that combine data and behavior — to
design applications and computer programs. It’s a way of organizing code that helps
developers manage and use data efficiently and securely. The core concept of the
object-oriented approach is to break complex problems into smaller objects.
The four fundamental principles of OOP — encapsulation, abstraction,
inheritance, and polymorphism — are not just abstract concepts but practical tools
that Java offers to solve real-world problems in software design.

Encapsulation ensures that the internal representation of an object is hidden from
the outside view.
Abstraction simplifies complex reality by modeling classes appropriate to the
problem.
Inheritance allows one class to inherit the properties and methods of another.
Polymorphism enables a single interface to represent different underlying forms
(data types).

These principles are not unique to Java. However, Java’s implementation of OOP
principles is acclaimed for its clarity and consistency, making it an ideal language
for those looking to master OOP.

The Java Environment: Setup and IDEs
To begin coding in Java, you need a Java Development Kit (JDK), which includes
the Java Runtime Environment (JRE) and an interpreter/loader (Java). An Integrated
Development Environment (IDE) like Eclipse, IntelliJ IDEA, or NetBeans can
significantly simplify coding in Java. These IDEs provide a user-friendly interface
for coding, debugging, and testing Java applications.

Java Syntax: The Building Blocks
Java syntax is the set of rules that defines how a Java program is written and
interpreted. The basics include:

-Variables: Variables in Java are containers that hold data values during the
execution of a program. Each variable must be declared with a data type, whether
it’s a primitive type like int, float, double, or an object type.
-Data Types: Java is strongly typed, meaning every variable and expression type is
known at compile time. Data types in Java are categorized into primitive types
(such as int, char, double) and non-primitive types (such as String, Arrays, and
Classes).
-Operators: Java provides a rich set of operators to manipulate variables. These
include arithmetic operators (+, -, *, /), relational operators (==, !=, >, <), and
logical operators (&&, ||, !).
-Control Structures: Java’s flow of execution is controlled by conditional
statements (if-else, switch-case) and loops (for, while, do-while), allowing the
program to make decisions and perform repetitions of tasks.

Java Functions and Methods
Methods in Java are blocks of code that perform a specific task. They’re used to
create reusable code and to divide a complex problem into smaller, manageable
pieces. Understanding how to write and use methods is essential for effective Java
programming.

Basics of Java Programming Language

Fig 1: Java programming Basics

Java Runtime Environment
The Java application environment performs as follows:

Fig 2: Java Runtime Environment (JRE)

In some Java technology runtime environments, apportion of the verified bytecode
is compiled to native machine code and executed directly on the hardware platform.
What is the difference to use that?

Fig 3: Java Runtime Environment (JRE) with Just in Time (JIT) compiler

Java Classes and Objects
Even though classes and objects belong to the realm of OOP, it’s important to
introduce them in the basics. In Java, everything revolves around classes and objects.
A class is a blueprint for objects, and an object is an instance of a class. Grasping
this relationship is pivotal for understanding Java’s OOP nature.

Understanding Classes
A class in Java can be thought of as a blueprint or a template for creating
objects. It defines a datatype by bundling data and methods that operate on the
data into a single unit. Classes contain:

 Fields: Variables that hold the state of an object.
 Methods: Blocks of code that define the behavior of the object.

Think of a class as a blueprint for a house. It contains the design details but is not
a house itself. Similarly, a class defines the structure and capabilities of what its
objects will be, but it is not the object itself.

The General Form of a Class
 When you define a class, you declare its exact form and nature. You do this by
specifying the instance variables that it contains and the methods that operate on
them. Although very simple classes might contain only methods or only instance
variables, most real-world classes contain both.
A class is created by using the keyword class. The general form of a class definition
is shown here:

class classname {
// declare instance variables
type var1;
type var2;
// ...
type varN;

// declare methods
type method1(parameters) {
// body of method
}
type method2(parameters) {
// body of method
}
// ...
type methodN(parameters) {
// body of method
}
}

Defining a Class
 To illustrate classes, we will develop a class that encapsulates information about
vehicles, such as cars, vans, and trucks. This class is called Vehicle, and it will
store three items of information about a vehicle: the number of passengers that it
can carry, its fuel capacity, and its average fuel consumption (in miles per gallon).
The first version of Vehicle is shown next. It defines three instance variables:
passengers, fuelcap, and mpg. Notice that Vehicle does not contain any methods.
Thus, it is currently a data-only class. (Subsequent sections will add methods to it.)

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon
}

 A class definition creates a new data type. In this case, the new data type is called
Vehicle. You will use this name to declare objects of type Vehicle. Remember that a
class declaration is only a type of description; it does not create an actual object.
Thus, the preceding code does not cause any objects of type Vehicle to come into
existence.
To actually create a Vehicle object, you will use a statement like the following:

Vehicle minivan = new Vehicle(); // create a Vehicle object called minivan

How Objects Are Created
In the preceding programs, the following line was used to declare an object of type
Vehicle:

Vehicle minivan = new Vehicle();

This declaration performs two functions.
First, it declares a variable called minivan of the class type Vehicle. This variable
does not define an object. Instead, it is simply a variable that can refer to an object.
Second, the declaration creates a physical copy of the object and assigns to minivan
a reference to that object. This is done by using the new operator.

The new operator dynamically allocates (that is, allocates at run time) memory for
an object and returns a reference to it. This reference is, more or less, the address in
memory of the object allocated by new. This reference is then stored in a variable.
Thus, in Java, all class objects must be dynamically allocated.

The two steps combined in the preceding statement can be rewritten like this to
show each step individually:

Vehicle minivan; // declare reference to object
minivan = new Vehicle (); // allocate a Vehicle object

The first line declares minivan as a reference to an object of type Vehicle. Thus,
minivan is a variable that can refer to an object, but it is not an object, itself. At this
point, minivan contains the value null, which means that it does not refer to an
object. The next line creates a new Vehicle object and assigns a reference to it to
minivan. Now, minivan is linked with an object.

After this statement executes, minivan will be an instance of Vehicle. Each time you
create an instance of a class; you are creating an object that contains its own copy of
each instance variable defined by the class. Thus, every Vehicle object will contain
its own copies of the instance variables passengers, fuelcap, and mpg.

 To access these variables, you will use the dot (.) operator. The dot operator links
the name of an object with the name of a member. The general form of the dot
operator is shown here:

object.member

Thus, the object is specified on the left, and the member is put on the right. For
example, to assign the fuelcap variable of minivan the value 16, use the following
statement:

minivan.fuelcap = 16;

In general, you can use the dot operator to access both instance variables and
methods.

Here is a complete program that uses the Vehicle class:

/* A program that uses the Vehicle class.
Call this file VehicleDemo.java
*/
class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon
}

// This class declares an object of type Vehicle.
class VehicleDemo {
public static void main(String args[]) {
Vehicle minivan = new Vehicle();
int range;
// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

// compute the range assuming a full tank of gas

range = minivan.fuelcap * minivan.mpg;

System.out.println("Minivan can carry " + minivan.passengers +" with a range of "
+ range);
}
}
The following output is displayed:
Minivan can carry 7 with a range of 336

Before moving on, let’s review a fundamental principle: each object has its own
copies of the instance variables defined by its class. Thus, the contents of the
variables in one object can differ from the contents of the variables in another. There
is no connection between the two objects except for the fact that they are both objects
of the same type. For example, if you have two Vehicle objects, each has its own
copy of passengers, fuelcap, and mpg, and the contents of these can differ between
the two objects. The following program demonstrates this fact. (Notice that the class
with main() is now called TwoVehicles.)

// This program creates two Vehicle objects.
class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon
}

// This class declares an object of type Vehicle.
class TwoVehicles {
public static void main(String args[]) {

Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
int range1, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;
sportscar.mpg = 12;

// compute the ranges assuming a full tank of gas
range1 = minivan.fuelcap * minivan.mpg;
range2 = sportscar.fuelcap * sportscar.mpg;
System.out.println("Minivan can carry " + minivan.passengers +" with a range of "
+ range1);
System.out.println("Sportscar can carry " + sportscar.passengers +" with a range of
" + range2);
}
}

The output produced by this program is shown here:
Minivan can carry 7 with a range of 336
Sportscar can carry 2 with a range of 168

As you can see, minivan’s data is completely separate from the data contained in
sportscar. The following illustration depicts this situation.

Reference Variables and Assignment
In an assignment operation, object reference variables act differently than do
variables of a primitive type, such as int. When you assign one primitive-type
variable to another, the situation is straightforward. The variable on the left receives
a copy of the value of the variable on the right. When you assign an object reference
variable to another, the situation is a bit more complicated because you are changing
the object that the reference variable refers to.
The effect of this difference can cause some counterintuitive results. For example,
consider the following fragment:

Vehicle car1 = new Vehicle();
Vehicle car2 = car1;

At first glance, it is easy to think that car1 and car2 refer to different objects, but this
is not the case. Instead, car1 and car2 will both refer to the same object. The
assignment of car1 to car2 simply makes car2 refer to the same object as does car1.
Thus, the object can be acted upon by either car1 or car2. For example, after the
assignment

car1.mpg = 26;

executes, both of these println() statements

System.out.println(car1.mpg);
System.out.println(car2.mpg);

display the same value: 26.

Although car1 and car2 both refer to the same object, they are not linked in any other
way. For example, a subsequent assignment to car2 simply changes the object to
which car2 refers. For example:

Vehicle car1 = new Vehicle();
Vehicle car2 = car1;
Vehicle car3 = new Vehicle();
car2 = car3; // now car2 and car3 refer to the same object.

After this sequence executes, car2 refers to the same object as car3. The object
referred to by car1 is unchanged.

Code Example: Defining a Class

public class Car {
 // Fields
 String make;
 String model;
 int year;

 // Method
 void displayInfo() {
 System.out.println("Car Make: " + make + ", Model: " + model + ",
Year: " + year);
 }
}

Code Example: Creating an Object

public class Main {
 public static void main(String[] args) {
 // Creating an object of Car
 Car myCar = new Car();

 // Assigning values to fields
 myCar.make = "Toyota";
 myCar.model = "Corolla";
 myCar.year = 2021;

 // Calling method
 myCar.displayInfo();}
}

