
Matrix equation 

The vector equation is equivalent to a matrix equation of the form 

 

where A is an m×n matrix, x is a column vector with n entries, and b is a column vector 
with m entries. 

 

The number of vectors in a basis for the span is now expressed as the rank of the matrix. 

Row reduction 

In row reduction, the linear system is represented as an augmented matrix: 

 

This matrix is then modified using elementary row operations until it reaches reduced 
row echelon form. There are three types of elementary row operations: 

Type 1: Swap the positions of two rows. 
Type 2: Multiply a row by a nonzero scalar. 
Type 3: Add to one row a scalar multiple of another. 

Because these operations are reversible, the augmented matrix produced always 
represents a linear system that is equivalent to the original. 

There are several specific algorithms to row-reduce an augmented matrix, the simplest of 
which are Gaussian elimination and Gauss-Jordan elimination. The following 
computation shows Gauss-Jordan elimination applied to the matrix above: 



 

The last matrix is in reduced row echelon form, and represents the system x = −15, y = 8, 
z = 2. A comparison with the example in the previous section on the algebraic elimination 
of variables shows that these two methods are in fact the same; the difference lies in how 
the computations are written down. 

 

Cramer's Rule  

Recall the general 3×4 matrix used to solve systems of three equations:  

 
   

 
 
This matrix will be used to solve systems by Cramer's Rule. We divide it into four 
separate 3×3 matrices: 

D =  
   

 
 
 

D x =  
   

 
 

D y =  
   

 
 



D z =  
   

 
 
 
D is the 3×3 coefficient matrix, and D x , D y , and D z are each the result of substituting 
the constant column for one of the coefficient columns in D .  

 
Cramer's Rule states that: 

x =  

y =  
z =  
Thus, to solve a system of three equations with three variables using Cramer's Rule,  

1. Arrange the system in the following form: 

a 1 x + b 1 y + c 1 z = d 1  
a 2 x + b 2 y + c 2 z = d 2  
a 3 x + b 3 y + c 3 z = d 3  

2. Create D , D x , D y , and D z .  
3. Find detD , detD x , detD y , and detD z .  

4. x = , y = , and z = .  

Note: If detD = 0 and detD x , detD y , or detD z≠ 0 , the system is inconsistent. If detD = 
0 and detD x = detD y = detD z = 0 , the system has multiple solutions.  

 
Example:Solve the following system: 

8x + 10z = 7y + 15  
2x + 3y + 8z = 7  
5y + 9 = 4x + 2z  

1. Rearrange the system: 

8x - 7y + 10z = 15  
2x + 3y + 8z = 7  
-4x + 5y - 2z = - 9  

2. Create the matrices: 



 D = 
   

3.  
 

4. 

D x = 

 

 
   

5.  
 

D y =  
   

6.  
 

D z =  
   

7.  
 

8. ind the determinants:  
 

) - (- 120 + 320 + 28) = 276 - 228 = 48  
etD x = (- 90 + 504 + 350) - (- 270 + 600 + 98) = 764 - 428 = 336  

 144  
  

9. 

F

detD = (- 48 + 224 + 100
d
detD y = (- 112 - 480 - 180) - (- 280 - 576 - 60) = - 772 - (- 916) =
detD z = (- 216 + 196 + 150) - (- 180 + 280 + 126) = 130 - 226 = - 96

x = = 7 . y = = 3 . z = = - 2 .  

Thus, ( z) = (7, 3, - 2) .  x, y, 



 

 

 

Cramer's rule is an explicit formula for the solution of a system of linear equations, with 
each variable given by a quotient of two determinants. For example, the solution to the 
system 

 

is given by 

 

For each variable, the denominator is the determinant of the matrix of coefficients, while 
the numerator is the determinant of a matrix in which one column has been replaced by 

rtant theoretically, it has little practical value for large 
matrices, since the computation of large determinants is somewhat cumbersome. (Indeed, 

 rule 

atrix solution 

m is expressed in the matrix form

the vector of constant terms. 

Though Cramer's rule is impo

large determinants are most easily computed using row reduction.) Further, Cramer's
has very poor numerical properties, making it unsuitable for solving even small systems 
reliably, unless the operations are performed in rational arithmetic with unbounded 
precision. 

 

M

If the equation syste  , the entire solution set 
can also be expressed in matrix form. If the matrix A is square (has m rows and n=m 
columns) and has full rank (all m rows are independent), then the system has a unique 
solution given by 



 

where is the inverse of A. More generally, regardless of whether m=n or not and 
regardless of the rank of A, all solutions (if any exist) are given using the Moore-Penrose 

A, denoted pseudoinverse of , as follows: 

 

where is a vector of free parameters that ranges over all possible n×1 vectors. A 
necessary and sufficient condition for any solution(s) to exist is that the potential solution 
obtained using satisfy — that is, that If this condition 

on does not hold, the equation system is inconsistent and has no solution. If the conditi
holds, the system is consistent and at least one solution exists. For example, in the above-
mentioned case in which A is square and of full rank, simply equals and the 
general solution equation simplifies to 

as previously 
stated, where has completely dropped out of the solution, leaving only a single 
solution. In other cases, though, remains and hence an infinitude of potential values of 
the free parameter vector give an infinitude of solutions of the equation. 

 


