Determination of transport Number:

طرق تعيين اعداد النقل

- 1-Hittorfs Method
- 2-Moving boundary method
- طريقة الحد الفاصل المتحرك
- 3-Measurement of Electromotive force

قياس القوه الدافعه الكهربائية

Mechanism of ionic Transport

The limiting law of Debye – Huckel

is related to the average interaction of the cation and anion with their respective ionic surroundings

$$logy = -A/Z_{+}Z_{-}/\sqrt{\mu}$$

= -0.519/Z₊Z₋/ $\sqrt{\mu}$

where:

Y±: Mean activity coefficient متوسط معامل الفعالية

$$\mu = \frac{1}{2} \sum_{i} c_{i} z_{i}$$

القوة الايونية Ionic Strength

C: Concentration , Z شحنه الايون The valancy if each ion present Example: Calculate the mean activity coefficieent for K₂SO₄ 0.2M). Assuming Deby Huckel limiting law to apply?

Faraday's laws of electrolysis, in Chemistry

first described by the English scientist Michael Faraday in 1833.

Faraday's First Law of Electrolysis

 "The mass of a substance deposited or liberated at any electrode is directly proportional to the amount of charge passed"

قانون فراداي الاول ينص على: كمية المادة المترسبة او المتحرره تتناسب طرديا مع كمية الكهربائية الماره في المحلول

Faraday's first law

 $m \propto Q$ $m = Z \cdot Q$

Q : Quantity of electricity m : mass of substance Z :electro-chemical equivalent of the substance.

Q = I . t
I : the intensity in amperes and t : the time in seconds.

Faraday's second law of electrolysis

كمية المادة المترسبة او المتحرره عد امرار نفس الكمية من الكهربائية تتناسب مع اوزانها المكافئة

Faraday's Second Law of Electrolysis

 "The mass of a substance deposited or liberated at any electrode on passing a certain amount of charge is directly proportional to its chemical equivalent weight".

Faraday's second law of electrolysis

FARADAY'S SECOND LAW

$$\frac{M_1}{M_2} = \frac{E_1}{E_2}$$

M₁ and M₂ are the masses deposited or liberated

E₁ and E₂ are their chemical equivalents