## **Derivatives**

## Rules for finding derivatives

#### 1. Constant Rule

The derivative of a constant is always zero. That is if f(x) = c then f'(x) = 0.

**2. Power Rule** The derivative of a power function,  $f(x) = x^n$ . Here n is a number of any kind: integer, rational, positive, negative, even irrational, if  $f(x) = x^n$ , then the derivative is  $f'(x) = nx^{n-1}$ 

## Examples:

| No | у                            | $\frac{dy}{dx}$                                                              |
|----|------------------------------|------------------------------------------------------------------------------|
| 1. | $y = x^4$                    | $\frac{dy}{dx} = 4x^3$                                                       |
| 2. | $y = x^{-4}$                 | $\frac{dy}{dx} = -4x^{-5} = -\frac{4}{x^5}$                                  |
| 3. | $y = \frac{1}{x^2} = x^{-2}$ | $\frac{dy}{dx} = -2x^{-3} = -\frac{2}{x^3}$                                  |
| 4. | $y = x^{\frac{3}{5}}$        | $\frac{dy}{dx} = \frac{3}{5}x^{\frac{3}{5}-1} = \frac{3}{5}x^{-\frac{2}{5}}$ |
| 5. | $y = 3x^{-\frac{5}{3}}$      | $\frac{dy}{dx} = -5x^{-\frac{8}{3}}$                                         |

- **3. Multiplication by constant:** If g(x) = cf(x) then g'(x) = cf'(x).
- **4. Sum Rule:** If h(x) = f(x) + g(x), then h'(x) = f'(x) + g'(x).
- **5. Difference Rule:** If h(x) = f(x) g(x), then h'(x) = f'(x) g'(x).
- **6. Product Rule:** The derivative of the product of two functions is not the product of the functions' derivatives; rather, it is described by the equation below:

$$\frac{d}{dx}(f(x) \times g(x)) = f(x) \times g'(x) + f'(x) \times g(x)$$

11

Example 6: Find derivative of the function  $y = (3x^2 + 5)(2x^3 - 5x - 4)$ 

$$\frac{dy}{dx} = (3x^2 + 5) \times (6x^2 - 5) + (2x^3 - 5x - 4) \times 6x$$

**7. Quotient Rule:** The derivative of the quotient of two functions is not the quotient of the functions' derivatives; rather, it is described by the equation below:

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \times f'(x) - f(x) \times g'(x)}{\left(g(x)\right)^2}$$

Example 7: Find derivative of the function

$$y = \frac{x^2 - 1}{x^2 + 1}$$

$$\frac{dy}{dx} = \frac{(x^2 + 1) \times 2x - (x^2 - 1) \times 2x}{(x^2 + 1)^2} = \frac{2x^3 + 2x - (2x^3 - 2x)}{(x^2 + 1)^2}$$

$$= \frac{2x^3 + 2x - 2x^3 + 2x}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}$$

#### 8. Chain Rule:

Suppose that we have two functions f(x) and g(x) and they are both differentiable.

1. If we define  $F(x) = (f \circ g)(x)$  then the derivative of F(x) is,

$$F'(x) = f'(g(x))g'(x)$$

2. If we have y = f(u) and u = g(x) then the derivative of y is,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

Example 8: Find derivatives of the functions

1. 
$$y = (2x+3)^4 \Rightarrow \frac{dy}{dx} = 4(2x+3)^3 \times 2 = 8(2x+3)^3$$

2. 
$$y = \sqrt{x^2 + 3x}$$
  $\Rightarrow y = (x^2 + 3x)^{1/2}$ 

$$\frac{dy}{dx} = \frac{1}{2}(x^2 + 3x)^{-1/2}(2x + 3) = \frac{(2x + 3)}{2\sqrt{x^2 + 3x}}$$

# جامعة بابل – كلية العلوم – قسم الفيزياء – الفصل الدراسي الاول - محاضرات الرياضيات المرحلة الاولى - العام الدراسي 2022 - (4) - م.د فؤاد حمزة عبد

3. 
$$y = \frac{x}{\sqrt{x^2 + 1}} \Rightarrow \frac{dy}{dx} = \frac{\sqrt{x^2 + 1} \times 1 - x \times (1/2)(x^2 + 1)^{-1/2} \times 2x}{x^2 + 1}$$
$$= \frac{\sqrt{x^2 + 1} - \frac{x^2}{\sqrt{x^2 + 1}}}{x^2 + 1} = \frac{\frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1}}}{\sqrt{x^2 + 1}\sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

Example 9: If 
$$y = u^2 - 2u$$
 and  $u = \sqrt{3x + 1}$ , find  $\frac{dy}{dx}$ 

$$\frac{dy}{du} = 2u - 2 = 2(u - 1)$$
 and  $\frac{du}{dx} = \frac{3}{2\sqrt{3x + 1}}$ 

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 2(u-1) \times \frac{3}{2\sqrt{3x+1}} = \frac{3(u-1)}{\sqrt{3x+1}} = \frac{3(\sqrt{3x+1}-1)}{\sqrt{3x+1}}$$

Example 10: If 
$$y = t + \frac{1}{t}$$
 and  $x = t - \frac{1}{t}$ , find  $\frac{dy}{dx}$ 

$$\frac{dy}{dt} = 1 - \frac{1}{t^2} = \frac{t^2 - 1}{t^2}$$
 and  $\frac{dx}{dt} = 1 + \frac{1}{t^2} = \frac{t^2 + 1}{t^2}$ 

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{t^2 - 1}{t^2} \times \frac{t^2}{t^2 + 1} = \frac{t^2 - 1}{t^2 + 1}$$

## **Higher Derivatives**

If the derivative f'(x) of a function f(x) exists in the domain of f(x), then we have a new function. Now that we have agreed that the derivative of a function is a function, we can repeat the process and try to differentiate the derivative. The result, if it exists, is called the **second derivative**. It is denoted f''(x). The derivative of the second derivative is called the third derivative, written f'''(x), and so on.

The *n*th derivative of f(x) is denoted  $f^{(n)}(x)$ . Thus Leibniz' notation for the *n*th derivative of y = f(x) is  $\frac{d^n y}{dx^n}$ .

Be careful to distinguish the second derivative from the square of the first derivative. Usually

$$\frac{d^2y}{dx^2} \neq \left(\frac{dy}{dx}\right)^2$$

# جامعة بابل - كلية العلوم - قسم الفيزياء - الفصل الدراسي الاول - محاضرات الرياضيات المرحلة الاولى - العام الدراسي 2022- 2023 - ( 4 ) - م.د فؤاد حمزة عبد

Example 11: Find 
$$f'(x)$$
,  $f''(x)$ ,  $f^{(3)}(x)$  and  $f^{(4)}(x)$  for  $f(x) = 2x^3 + 3x^2 - 4x + 5$ 

$$f'(x) = 6x^2 + 6x - 4$$

$$f''(x) = 12x + 6$$

$$f^{(3)}(x) = 12$$

$$f^{(4)}(x) = 0$$

Example 12: Compute the first, second and third derivatives of  $y = \sqrt{x+2}$ 

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x+2}}$$

$$\frac{d^2y}{dx^2} = -\frac{1}{4(x+2)^{3/2}}$$

$$\frac{d^3y}{dx^3} = \frac{3}{8(x+2)^{5/2}}$$

#### Exercises

Find derivative in each of the following problems (1-4)

1. 
$$y = (x^2 - 1)^4$$

1. 
$$y = (x^2 - 1)^4$$
 2.  $y = x^2 \sqrt{2x^2 + 3}$ 

$$3. \quad y = \frac{1 + \sqrt{x}}{1 - \sqrt{x}}$$

3. 
$$y = \frac{1 + \sqrt{x}}{1 - \sqrt{x}}$$
 4.  $y = \sqrt{\frac{1 - x}{x^2 + 1}}$ 

Compute the first, second and third derivatives in the following problems (5-10)

5. 
$$y = 2x^3 - 5x^2 + 3x$$
 8.  $y = \sqrt{2x + 3}$ 

8. 
$$y = \sqrt{2x + 3}$$

9. 
$$y = x\sqrt{x}$$

10. 
$$y = (x^2 + 2)^{5/2}$$

11. If 
$$y = u\sqrt{2u+5}$$
 and  $x = (4u)^{\frac{1}{3}}$  find  $\frac{dy}{dx}$ 

12. If 
$$u = s + \sqrt{s}$$
 and  $v = s - \sqrt{s}$  find  $\frac{du}{dv}$