
  

 

Semantic Analysis  
  
What is Semantic Analysis?  
Parsing only verifies that the program consists of tokens arranged in a syntactically 
valid combination.  Now we’ll move forward to semantic analysis, where we delve 
even deeper to check whether they form a sensible set of instructions in the 
programming language.  For a program to be semantically valid, all variables, 
functions, classes, etc. must be properly defined, expressions and variables must be 
used in ways that respect the type system, access control must be respected, and so 
forth.   
 
Semantic analysis is a pass by a compiler that adds semantic information to 
the parse tree and performs certain checks based on this information. It 
logically follows the parsing phase, in which the parse tree is generated, and 
logically precedes the code generation phase, in which executable code is 
generated. (In a compiler implementation, it may be possible to fold different 
phases into one pass.) Typical examples of semantic information that is added 
and checked is typing information (type checking) and the binding of 
variables and function names to their definitions (object binding). Sometimes 
also some early code optimization is done in this phase. 
 
A large part of semantic analysis consists of tracking variable/function/type 
declarations and type checking.  In many languages, identifiers have to be 
declared before they’re used.  As the compiler encounters a new declaration, it 
records the type information assigned to that identifier.  Then, as it continues 
examining the rest of the program, it verifies that the type of an identifier is 
respected in terms of the operations being performed.  
For example, the type of the right side expression of an assignment statement 
should match the type of the left side, and the left side needs to be a properly 
declared and assignable identifier.  The parameters of a function should match 
the arguments of a function call in both number and type.  The language may 
require that identifiers be unique, thereby forbidding two global declarations from 
sharing the same name.  Arithmetic operands will need to be of numeric—perhaps 
even the exact same type (no automatic int-to-double conversion, for instance).  
These are examples of the things checked in the semantic analysis phase.  
Some semantic analysis might be done right in the middle of parsing.  As a 
particular construct is recognized, say an addition expression, the parser action 
could check the two operands and verify they are of numeric type and compatible 
for this operation.    



  

 

Types and Declarations  
We begin with some basic definitions to set the stage for performing semantic 
analysis.   
A type is a set of values and a set of operations operating on those values.  There 
are three categories of types in most programming languages:  
 
Base types: int, float, double, char, bool, etc.  These are the primitive types 
provided directly by the underlying hardware.  There may be a facility for user-
defined variants on the base types. 
Compound types:  arrays, pointers, records, struct, union, classes, and so on.  
These types are constructed as aggregations of the base types and simple 
compound types.  
Complex types:  lists, stacks, queues, trees, heaps, tables, etc.  You may 
recognize these as abstract data types.  A language may or may not have support 
for these sorts of higher-level abstractions.  
 In many languages, a programmer must first establish the name and type of any 
data object (e.g., variable, function, type, etc).  In addition, the programmer usually 
defines the lifetime.  A declaration is a statement in a program that communicates 
this information to the compiler.  The basic declaration is just a name and type, but 
in many languages it may include modifiers that control visibility and lifetime (i.e., 
static  in C, private in Java).  Some languages also allow declarations to 
initialize variables, such as in C, where you can declare and initialize in one 
statement.  The following C statements show some example declarations:  
 
double calculate(int a, double b); // function prototype  
  
int x = 0;   // global variables available throughout  
double y;   // the program  
int main()   
{  
 int m[3];  // local variables available only in main  
 char *n;  
 ...  
}  
 
Function declarations or prototypes serve a similar purpose for functions that 
variable declarations do for variables.  Function and method identifiers also have a 
type, and the compiler can use ensure that a program is calling a function/method 
correctly.  The compiler uses the prototype to check the number and types of 



  

 

arguments in function calls.  The location and qualifiers establish the visibility of 
the function (Is the function global? Local to the module? Nested in another 
procedure? Attached to a class?)  Type declarations (e.g., C  typedef, C++ classes) 
have similar behaviors with respect to declaration and use of the new typename. 
 
 
Type Checking  
Type checking is the process of verifying that each operation executed in a 
program respects the type system of the language.  This generally means that all 
operands in any expression are of appropriate types and number.  Much of 
what we do in the semantic analysis phase is type checking.  Sometimes the rules 
regarding operations are defined by other parts of the code (as in function 
prototypes), and sometimes such rules are a part of the definition of the language 
itself (as in "both operands of a binary arithmetic operation must be of the same 
type").  If a problem is found, e.g., one tries to add a char pointer to a double in C, 
we encounter a type error.  A language is considered strongly-typed if each and 
every type error is detected during compilation.  Type checking can be done 
compilation, during execution, or divided across both. 
 
Static type checking is done at compile-time.  The information the type checker 
needs is obtained via declarations and stored in a master symbol table.  After 
this information is collected, the types involved in each operation are checked.  It 
is very difficult for a language that only does static type checking to meet the 
full definition of strongly typed.  Even motherly old Pascal, which would appear to 
be so because of its use of declarations and strict type rules, cannot find every type 
error at compile time.  This is because many type errors can sneak through the type 
checker.   
 
For example, if a and b are of type int and we assign very large values to them, a 
* b may not be in the acceptable range of ints, or an attempt to compute the ratio 
between two integers may raise a division by zero.  These kinds of type errors 
usually cannot be detected at compile time.  C makes a somewhat paltry attempt 
at strong type checking—things as the lack of array bounds checking, no 
enforcement of variable initialization or function return create loopholes.    
 
 
 
 
 



  

 

Dynamic type checking is implemented by including type information for each 
data location at runtime.   
For example, a variable of type double would contain both the actual double 
value and some kind of tag indicating "double type".  The execution of any 
operation begins by first checking these type tags.  The operation is performed 
only if everything checks out.  Otherwise, a type error occurs and usually halts 
execution.   
 
For example, when an add operation is invoked, it first examines the type tags 
of the two operands to ensure they are compatible.   LISP is an example of a 
language that relies on dynamic type checking.  Because LISP does not require 
the programmer to state the types of variables at compile time, the compiler 
cannot perform any analysis to determine if the type system is being violated.  But 
the runtime type system takes over during execution and ensures that type 
integrity is maintained. Dynamic type checking clearly comes with a runtime 
performance penalty, but it usually much more difficult to subvert and can report 
errors that are not possible to detect at compile-time. 


