5. Domain and Range

If the value of one variable y is completely determined by the value of x (that is, y depends on the value of x), we say that y is a function of x. Often the value of y is given by a **rule** or **formula** that says how to calculate it from the variable x. For instance, the equation $A = \pi r^2$ is a rule that calculates the area A of a circle from its radius r.

A symbolic way to say y is a function of x is by writing:

$$y = f(x)$$
 (y is a function of x)

In this notation:

The symbol f represents the function.

The letter $\underline{\mathbf{x}}$, called <u>the independent variable</u>, represents the input value of $\underline{\mathbf{f}}$. $\underline{\mathbf{v}}$, the dependent variable, represents the corresponding output value of $\underline{\mathbf{f}}$ at $\underline{\mathbf{x}}$.

Domain(D_f) represents values of (x);

Domain(R_f) represents values of $(\underline{\mathbf{v}})$;

For real-valued domains and ranges, the following points should be satisfied:

- 1. We cannot divide by zero. The <u>denominator</u> cannot be <u>zero</u>. $\binom{a}{0}$
- 2. Any value under the square root cannot be negative
 - To find the Domain (Df):
 - 1. Find (y) in terms of (x);
 - 2. Avoid: (a) division by zero; (b) root value (complex number $(\sqrt{-})$
 - To find the Range:
 - 1. Find (x) in terms of y;
 - 2. Avoid: (a) division by zero; (b) root value (complex number $(\sqrt{-})$

Example 1: Find the domain and range of $y = x^2 + 1$

Solution:
$$D_f$$
; $-\infty \le x \le \infty$ or;;; D_f : R_f ; $x^2 = y - 1$ $x = \pm \sqrt{y - 1}$ $y - 1 \ge 0$;; $y \ge 1$

Example 2: Find the domain and range of $y = \sqrt{x+1}$

Solution: D_f ; $x + 1 \ge 0$;;; $x \ge -1$

 R_f ; $y \ge 0$ $\sqrt{+} = +$

Example 3: Find the domain and range of $y = 1 + \sqrt{x}$

Solution: D_f ; $x \ge 0$

 R_f ; min $\sqrt{0} = 0$;;; y = 1 + 0 = 1 ;;; $y \ge 1$

Example 4: Find the domain and range of $(x-2)^2 + (y+1)^2 = 9$

Solution:

$$(y+1)^2 = 9 - (x-2)^2$$

$$(y+1) = \pm \sqrt{9 - (x-2)^2}$$

$$y = -1 \pm \sqrt{9 - (x-2)^2}$$

 $9-(x-2)^2 \le 0$;;; $(x-2)^2 \le 9$;;; $-3 \le (x-2) \le 3$

 $D_{\rm f}$; $-1 \le x \le 5$

 $\underline{\mathbf{R}_{\mathbf{f}}}$

$$(x-2)^2 = 9-(y+1)^2$$

$$(x-2) = \pm \sqrt{9-(y+1)^2}$$

$$x = 2 \pm \sqrt{9-(y+1)^2}$$

 $9-(y+1)^2 \ge 0$;; $(y+1)^2 \le 9$;;; $-3 \le (y+1) \le 3$

 $R_{f} - 4 \le y \le 2$

Example 5: Find the domain and range of $y = \frac{1}{x-4} - \frac{1}{x+4}$

Solution:
$$D_f$$
; $x \neq 4 \neq and x \neq -4$
 $y = \frac{(x+4)-(x-4)}{(x-4)\times(x+4)} = \frac{8}{x^2-16}$
 $y(x^2-16) = 8$

$$yx^2 - 16y = 8;; yx^2 = 8 + 16y$$

$$8 + 16 y \ge 0$$
 ;;; $y \ge -\frac{1}{2}$;;; $y > 0$

$$R_f$$
; $y \le -\frac{1}{2}$ $\cup y > 0$

Example 6: Find the domain of $y = \sqrt{x-1} + \sqrt{9-x^2}$

Solution:
$$x-1 \ge 0$$
;; $x \ge 1$

$$9-x^2 \ge 0$$
;; $x^2 \le 9$;; $-3 \le x \le 3$

$$D_f$$
; $1 \le x \le 3$

Example 7: Find the domain and range of $y = \sqrt{4 - \sqrt{x + 2}}$ **Solution:** $0 \le 4 - \sqrt{x + 2}$;;; $\sqrt{x + 2} \le 4$;; $x + 2 \le 16$;;; $x \le 14$

For
$$\sqrt{x+2}$$
; $0 \le x+2$;;; $-2 \le x$

$$D_{f}$$
: $-2 \le x \le 14$

For y min
$$\sqrt{x+2} = 0$$
; $y = \sqrt{4-0}$

Max.
$$\sqrt{x+2} = \sqrt{14+2} = 4$$
;; $y = \sqrt{4-4} = 0$

$$R_f$$
: $0 \le y \le 2$

