

5.1. Joint Distribution

Let X and Y be random variables on a sample space S with respective image sets

$$X(S) = \{x_1, x_2, \ldots, x_n\}$$
 and $Y(S) = \{y_1, y_2, \ldots, y_m\}$

We make the product set

$$X(S) \times Y(S) = \{(x_1, y_1), (x_1, y_2), \ldots, (x_n, y_m)\}\$$

into a probability space by defining the *probability* of the ordered pair (x_i, y_j) to be $P(X = x_i, Y = y_i)$ which we write $h(x_i, y_i)$. This function h on $X(S) \times Y(S)$, i.e. defined by $h(x_i, y_i) = P(X = x_i, Y = y_i)$, is called the *joint distribution* or *joint probability function* of X and Y and is usually given in the form of a table:

У	y_1	y_2	 y_m	Sum
x_1	$h(x_1, y_1)$	$h(x_1, y_2)$	 $h(x_1, y_m)$	$f(x_1)$
x_2	$h(x_2, y_1)$	$h(x_2, y_2)$	 $h(x_2, y_m)$	$f(x_2)$
			 	•••
x_n	$h(x_n, y_1)$	$h(x_n, y_2)$	 $h(x_n, y_m)$	$f(x_n)$
Sum	$g(y_1)$	$g(y_2)$	 $g(y_m)$	

The above functions f and g are defined by

$$f(x_i) = \sum_{j=1}^{m} h(x_i, y_j)$$
 and $g(y_j) = \sum_{i=1}^{n} h(x_i, y_j)$

i.e. $f(x_i)$ is the sum of the entries in the *i*th row and $g(y_i)$ is the sum of the entries in the *j*th column; they are called the *marginal distributions* and are, in fact, the (individual) distributions of X and Y respectively (Problem $O(x_i)$). The joint distribution X is a satisfies the conditions

(i)
$$h(x_i, y_j) \ge 0$$
 and (ii) $\sum_{i=1}^n \sum_{j=1}^m h(x_i, y_j) = 1$

Probability and Statistics Dr. Samah Alhashime – 5th Lecture

Now if X and Y are random variables with the above joint distribution (and respective means μ_X and μ_Y), then the *covariance* of X and Y, denoted by Cov (X, Y), is defined by

$$\mathrm{Cov}(X, Y) = \sum_{i,j} (x_i - \mu_X)(y_j - \mu_Y) h(x_i, y_j) = E[(X - \mu_X)(Y - \mu_Y)]$$

or equivalently

Cov
$$(X, Y) = \sum_{i,j} x_i y_j h(x_i, y_j) - \mu_X \mu_Y = E(XY) - \mu_X \mu_Y$$

The correlation of X and Y, denoted by $\rho(X, Y)$, is defined by

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

Example: A pair of fair dice is tossed. We obtain the finite equiprobable space S consisting of the 36 ordered pairs of numbers between 1 and 6:

$$S = \{(1,1), (1,2), \ldots, (6,6)\}$$

Let X and Y be the random variables on S in Example 5.1, i.e. X assigns the maximum of the numbers and Y the sum of the numbers to each point of S. The joint distribution of X and Y follows:

Probability and Statistics Dr. Samah Alhashime – 5th Lecture

XY	2	3	4	5	6	7	8	9	10	11	12	Sum
1	1 36	0	0	0	0	0	0	0	0	0	0	1 36
2	0	2 36	1 36	0	0	0	0	0	0	0	0	36
3	0	0	2 36	2 36	1 3 6	0	0	0	0	0	0	5 36
4	0	0	0	2 36	2 36	2 36	1 36	0	0	0	0	7 36
5	0	0	0	0	2 36	2 36	2 36	2 36	1 36	0	0	9 36
6	0	0	0	0	0	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	2 36	1 36	11 36
Sum	1 36	$\frac{2}{36}$	3/36	4 36	5 36	6 36	<u>5</u> 36	4 36	3 36	2 36	1 36	

The above entry $h(3,5) = \frac{2}{36}$ comes from the fact that (3,2) and (2,3) are the only points in S whose maximum number is 3 and whose sum is 5; hence

$$h(3,5) = P(X=3, Y=5) = P(\{(3,2), (2,3)\}) = \frac{2}{36}$$

The other entries are obtained in a similar manner.

We compute the covariance and correlation of X and Y. First we compute E(XY):

$$E(XY) = \sum x_i y_j h(x_i, y_j)$$

$$= 1 \cdot 2 \cdot \frac{1}{36} + 2 \cdot 3 \cdot \frac{2}{36} + 2 \cdot 4 \cdot \frac{1}{36} + \cdots + 6 \cdot 12 \cdot \frac{1}{36}$$

$$= \frac{1232}{36} = 34.2$$

Probability and Statistics Dr. Samah Alhashime – 5th Lecture

By Example , $\mu_X=4.47$ and $\mu_Y=7$, and by Example 5.5, $\sigma_X=1.4$ and $\sigma_Y=2.4$; hence

$$Cov(X, Y) = E(XY) - \mu_X \mu_Y = 34.2 - (4.47)(7) = 2.9$$

and

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{2.9}{(1.4)(2.4)} = .86$$

Example 5.7: Let X and Y, and X' and Y' be random variables with the following joint distributions:

Y	4	10	Sum
1	1	1/4	$\frac{1}{2}$
3	1	1/4	$\frac{1}{2}$
Sum	1 2	$\frac{1}{2}$	

Y' X'	4	10	Sum
1	0	$\frac{1}{2}$	$\frac{1}{2}$
3	$\frac{1}{2}$	0	$\frac{1}{2}$
Sum	$\frac{1}{2}$	$\frac{1}{2}$	

Observe that X and X', and Y and Y' have identical distributions:

x_i	1	3
$f(x_i)$	$\frac{1}{2}$	$\frac{1}{2}$

$$\begin{array}{|c|c|c|c|c|c|}\hline y_i & 4 & 10\\ \hline g(y_i) & \frac{1}{2} & \frac{1}{2}\\ \hline \end{array}$$

Distribution of X and X'

Distribution of Y and Y'

We show that $Cov(X, Y) \neq Cov(X', Y')$ and hence $\rho(X, Y) \neq \rho(X', Y')$. We first compute E(XY) and E(X'Y'):

$$E(XY) = 1 \cdot 4 \cdot \frac{1}{4} + 1 \cdot 10 \cdot \frac{1}{4} + 3 \cdot 4 \cdot \frac{1}{4} + 3 \cdot 10 \cdot \frac{1}{4} = 14$$

$$E(X'Y') = 1 \cdot 4 \cdot 0 + 1 \cdot 10 \cdot \frac{1}{2} + 3 \cdot 4 \cdot \frac{1}{2} + 3 \cdot 10 \cdot 0 = 11$$

Since $\mu_X = \mu_{X'} = 2$ and $\mu_Y = \mu_{Y'} = 7$,

$$Cov(X,Y) = E(XY) - \mu_X \mu_Y = 0$$
 and $Cov(X',Y') = E(X'Y') - \mu_{X'} \mu_{Y'} = -3$

5.2. Independent Random Variables

A finite number of random variables X, Y, \ldots, Z on a sample space S are said to be independent if

$$P(X = x_i, Y = y_j, ..., Z = z_k) = P(X = x_i) P(Y = y_j) \cdot \cdot \cdot P(Z = z_k)$$

for any values x_i, y_j, \ldots, z_k . In particular, X and Y are independent if

$$P(X = x_i, Y = y_i) = P(X = x_i) P(Y = y_i)$$

Now if X and Y have respective distributions f and g, and joint distribution h, then the above equation can be written as

 $h(x_i, y_i) = f(x_i) g(y_i)$

In other words, X and Y are independent if each entry $h(x_i, y_i)$ is the product of its marginal entries.

Example: Let X and Y be random variables with the following joint distribution:

X	2	3	4	Sum
1	.06	.15	.09	.30
2	.14	.35	.21	.70
Sum	.20	.50	.30	

Thus the distributions of X and Y are as follows:

x	1	2	
f(x)	.30	.70	

Distribution of X

у	2	3	4	
g(y)	.20	.50	.30	

Distribution of Y

X and Y are independent random variables since each entry of the joint distribution can be obtained by multiplying its marginal entries; that is,

$$P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

for each i and each j.

Theorem: Let X and Y be independent random variables. Then:

- (i) E(XY) = E(X)E(Y),
- (ii) Var(X+Y) = Var(X) + Var(Y),
- (iii) Cov(X, Y) = 0.

Part (ii) in the above theorem generalizes to the very important

Theorem: Let X_1, X_2, \ldots, X_n be independent random variables. Then

$$Var(X_1 + \cdots + X_n) = Var(X_1) + \cdots + Var(X_n)$$

<Best Regards>